Math, asked by Anonymous, 6 months ago

1) If a∝b, b∝c then p.t a + b + c ∝ √bc + √ca + √ab
2) a,b,c,d are in continued proportion. Prove that a² + b² + c² : b² + c² + d² = b:d​

Answers

Answered by pulakmath007
21

SOLUTION :-

QUESTION :-

1) If a∝b, b∝c

then p.t a + b + c ∝ √bc + √ca + √ab

2) a,b,c,d are in continued proportion.

Prove that a² + b² + c² : b² + c² + d² = b:d

EVALUATION :-

1.

a ∝ b implies a = kb .......... (1)

b ∝ c implies b = mc ..........(2)

Where k and m are non zero constants

Equation (1) & (2) gives

a = kmc ........... (3)

Now

 \displaystyle \sf{ \frac{a + b + c}{ \sqrt{bc} +  \sqrt{ca}  +  \sqrt{ab}  }  \: }

  = \displaystyle \sf{ \frac{kmc + mc + c}{ \sqrt{mc.c} +  \sqrt{c.kmc}  +  \sqrt{kmc.mc}  }  \: }

  = \displaystyle \sf{ \frac{km+ m+ 1}{ \sqrt{m} +  \sqrt{km}  +  \sqrt{k{m}^{2} }  }  \: }

= constant

Hence a + b + c ∝ √bc + √ca + √ab

2.

a,b,c,d are in continued proportion

Therefore

a : b = b : c = c : d

a = kb

b = kc

c = kd

Where k is a non zero constant

Above three equations give

 \sf{a =  {k}^{3}d  \: }

 \sf{b =  {k}^{2}d }

c = kd

Now

LHS

= a² + b² + c² : b² + c² + d²

 =  \sf{ ({k}^{6}  {d}^{2}  +{k}^{4}  {d}^{2}   +{k}^{2}  {d}^{2} ) :  ({k}^{4}  {d}^{2}   +{k}^{2}  {d}^{2}  +  {d}^{2} )}

 =  \sf{  {k}^{2} {d}^{2}  ({k}^{4}  +{k}^{2}  +1 ) :  {d}^{2}  ({k}^{4}    +{k}^{2}   + 1 )}

 =  \sf{ {k}^{2}  :1 }

RHS

 \sf{b : d}

 =  \sf{ {k}^{2} d : d}

 \sf{ =  {k}^{2} :1  }

Hence LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log x base y=6,

then the relation between x and y

https://brainly.in/question/27199002

2. What is the value of cos^2 31-sin^2 59

https://brainly.in/question/28163136


BrainlyPopularman: Marvellous
pulakmath007: Thank you Bro
Similar questions