Math, asked by janhvishuks, 9 months ago

1.
If a + b + c = 0, then find the value of
a+b/c + b+c/a + c+a/b

Answers

Answered by CharmingPrince
69

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{ \underline{ \mathfrak{ \green{Question}}}}

\boxed{\red{\bold{Given:}}}

 a+b+c=0

\boxed{\red{\bold{Find:}}}

\displaystyle{\frac{a+b}{c}} + \displaystyle{\frac{b+c}{a}} + \displaystyle{\frac{c+a}{b}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{ \underline{ \mathfrak{ \green{Answer}}}}

\boxed{\red{\bold{Given:}}}

a + b + c = 0

a + b = -c \; \; \; .....(i)

b + c = -a \; \; \; .....(ii)

c + a = -b \; \; \; .....(iii)

\boxed{\red{\bold{Solving\:the\:expression:}}}

\implies\displaystyle{\frac{a+b}{c}} + \displaystyle{\frac{b+c}{a}} + \displaystyle{\frac{c+a}{b}}

\implies\displaystyle{\frac{ab(a+b) + bc(b+c) + ac(a+c)}{abc}}

{\boxed{\red{\bold{Putting\: values\: of\: a+b , b+c\: , \:c+a\: , from\: (i),(ii),(iii)}}}}

\implies\displaystyle{\frac{ab(-c) + bc(-a) + ac(-b)}{abc}}

\implies\displaystyle{\frac{-abc-abc-abc}{abc}}

\implies\displaystyle{\frac{-3abc}{abc}}

\boxed{\red{\bold{Cancelling \:abc:}}}

\implies -3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions