1. If a+b+c=0, then write the value of a cube + b cube + c cube.
2. If a square + b square + c square= 20 and a+b+c=0, find ab + bc + ca.
3. If a+b+c=9 and ab + bc + ca = 40, find a square + b square + c square.
4. If a square + b square + c square = 250 and ab + bc + ca = 3, find a+b+c.
Answers
a + b + c = 9
ab + bc + ca = 40
To find : a² + b² + c²
The following expression matches to the algebraic identity
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac or
(a + b + c)² = a² + b² + c² + 2( ab + bc + ac)
Thus,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
substituting the values,
we have,
9² = a² + b² + c² + 2( 40)
81 = a² + b² + c² + 80
Transposing 80 to LHS,
we have,
81 - 80 = a² + b² + c²
Thus,
a² + b² + c² = 1
Answer:
1) Required value of
2) required value of
3) required value of
4) required value of a+b+c is 16.
Step-by-step explanation:
1) Given,
we know,
We are putting
So,
2) Given,
We know,
3) Given,
We know,
4)
We know,
This is a problem of Algebra.
Know more about Algebra,
1) https://brainly.in/question/13024124
2) https://brainly.in/question/1169549
#SPJ2