Math, asked by kavya2249, 1 year ago

1. If a+b+c=0, then write the value of a cube + b cube + c cube.

2. If a square + b square + c square= 20 and a+b+c=0, find ab + bc + ca.

3. If a+b+c=9 and ab + bc + ca = 40, find a square + b square + c square.

4. If a square + b square + c square = 250 and ab + bc + ca = 3, find a+b+c.

Answers

Answered by xcristianox
241

a + b + c = 9

ab + bc + ca = 40

To find : a² + b² + c²

The following expression matches to the algebraic identity

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac or

(a + b + c)² = a² + b² + c² + 2( ab + bc + ac)

Thus,

(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)

substituting the values,

we have,

9² = a² + b² + c² + 2( 40)

81 = a² + b² + c² + 80

Transposing 80 to LHS,

we have,

81 - 80 = a² + b² + c²

Thus,

a² + b² + c² = 1

Answered by payalchatterje
0

Answer:

1) Required value of  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc

2) required value of ab + bc + ca \: is \: ( - 10)

3) required value of  {a}^{2}  +  {b}^{2}  +  {c}^{2}  \: is \: 1.

4) required value of a+b+c is 16.

Step-by-step explanation:

1) Given,

a + b + c = 0

we know,

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{?}  - ab - bc - ca)

We are putting a + b + c = 0

So,

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 0 \times ( {a}^{2}  +  {b}^{2}  +  {c}^{?}  - ab - bc - ca) \\ {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 0

 {a}^{3}  +  {b}^{3}  +  {c}^{3}   =  3abc

2) Given,

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 20 \\ and \: a + b + c = 0

We know,

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

  {0}^{2}  = 20 + 2(ab + bc + ca) \\ ab + ca + bc =   \frac{ - 20}{2}  \\  =  - 10

3) Given,

a + b + c = 9 \\ and \: ab + bc + ca = 40

We know,

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

 {9}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2} + 2 \times 40  \\  {a}^{2}  +  {b}^{2}  +  {c}^{2} = 81 - 80 \\  {a}^{2}  +  {b}^{2}  +  {c}^{2} = 1

4)

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 250 \\ and \: ca  + ab + bc = 3

We know,

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

 {(a + b + c)}^{2}  = 250 + 2 \times 3 \\  {(a + b + c)}^{2}  = 256 \\ a + b + c =  \sqrt{256}  \\ a + b + c = 16

This is a problem of Algebra.

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions
Math, 6 months ago