1)If a+b+c+6 and ab+bc+ac=11,find the value of a cube+b cube+c cube -3abc 2)if a+b+c=0 then find the value of A square/bc+b square/ca+c square/ab
Answers
Answered by
4
Answer:
1.) the value of a³ + b³ + c³ - 3abc = 18
2.) a²/bc + b²/ac + c²/ab = 3
Step-by-step explanation:
1.) a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² -ab-ac-ba)
=6*(a² + b² + c²-(ab+bc+ca))
=6*(a² + b² + c²-11)
=6*(((a+b+c)² - 2ab - 2bc - 2ca) - 11) [we know the formula]
=6*((36-2(ab+bc+ca))-11)
=6*((36-22)-11)
=6*(14-11)
=6*3 = 18
2.) a+b+c=0
we know that
a³+b³+c³ = 3abc
a³/abc + b³/abc + c³/abc = 3
after simplifying
a²/bc + b²/ac + c²/ab = 3
rowwdyrathore327:
Very nice explanation :)
Similar questions