Math, asked by rowwdyrathore327, 11 months ago

1)If a+b+c+6 and ab+bc+ac=11,find the value of a cube+b cube+c cube -3abc 2)if a+b+c=0 then find the value of A square/bc+b square/ca+c square/ab

Answers

Answered by rakeshchennupati143
4

Answer:

1.) the value of a³ + b³ + c³ - 3abc = 18

2.) a²/bc + b²/ac + c²/ab = 3

Step-by-step explanation:

1.) a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² -ab-ac-ba)

                       =6*(a² + b² + c²-(ab+bc+ca))

                       =6*(a² + b² + c²-11)

                       =6*(((a+b+c)² - 2ab - 2bc - 2ca) - 11)  [we know the formula]

                       =6*((36-2(ab+bc+ca))-11)

                       =6*((36-22)-11)

                       =6*(14-11)

                      =6*3 = 18

2.) a+b+c=0

    we know that

    a³+b³+c³ = 3abc

    a³/abc + b³/abc + c³/abc = 3

    after simplifying

    a²/bc + b²/ac + c²/ab = 3


rowwdyrathore327: Very nice explanation :)
rakeshchennupati143: tnq so much
Similar questions