Math, asked by sharmabhumika54, 10 months ago

1. If a, b, c
are in AP, Prove that a² + c ² - 2 b c = 2 a(b-c)​

Answers

Answered by jaysri5ne
13

Step-by-step explanation:

if a, b, c are in AP then 2b = a + c

a2 + c2 - 2bc= a2 + c2 - ( a+c)c

= a2 + c2 -ac-c2

= a2 - ac

= a(a-c)

= a((2b-c)-c)

= a(2b-2c)

= 2a(b-c)

Answered by swethassynergy
7

It is proved that a^{2} +c^{2} -2\ b\ c = 2a( b-c).

Step-by-step explanation:

Given:

a, b, c are in AP.

Prove that  a^{2} +c^{2} -2\ b\ c = 2a( b-c).

To  Find:

It is  to prove that a^{2} +c^{2} -2\ b\ c = 2a( b-c).

Formula Used:

If a, b, c are in  Arithmetic Progression (A.P.).

It means b-a=c-a

             2b=a+c

Solution:

As given a, b and c are in A.P.

2b=a+c   ---------- equation no.01

 As given Prove that a^{2} +c^{2} -2\ b\ c = 2a( b-c)

 LHS  =a^{2} +c^{2} -2\ b\ c

 Putting the value of b from equation no.01.

         =a^{2} +c^{2} -2\ (\frac{a+c}{2} )\ c

          =a^{2} +c^{2} - (ac+c^{2} )

          =a^{2} +c^{2} - ac-c^{2}

          =a^{2}  - ac

       

 RHS  =2a(b-c)

 Putting the value of b from equation no.01.

           =2a(\frac{a+c}{2} -c)

           =2a(\frac{a+c-2c}{2} )

          =2a(\frac{a-c}{2} )

           =a(a-c)

           =a^{2}  - ac

 LHS= RHS

Hence, it is proved that a² + c ² - 2 b c = 2 a(b-c).

Similar questions