Math, asked by dipshribhowmick02, 4 months ago

1. If a, b, c be positive real numbers, prove that
(i) a^2 +b^2+64 > abc(a + b + c),​

Answers

Answered by Anonymous
2

Answer:

\huge\colorbox{yellow}{Given\:}

If a, b, c be positive real numbers

\huge\colorbox{yellow}{To\:Find\:-}

The minimum value of

( \frac{1}{a} +  \frac{2}{b}  +  \frac{3}{c})

\huge\colorbox{yellow}{Solution\:-}

 \small\underbrace\mathrm\red{Using\:Formula}

A. M > GM

Now,

( \frac{1}{a}  +  \frac{2}{b} +  \frac{3}{c}) \geqslant ( \frac{1}{a}  \frac{1}{ {b}^{2} }  \frac{1}{ {c}^{3} })^{6}  =  \frac{1}{2}

 =  > ( \frac{1}{a} +  \frac{2}{b}  +  \frac{3}{c}) \geqslant 3

Hence, The minimum value is 3

\huge\colorbox{yellow}{Thank\:You}

we \: value \: your \: care

Similar questions