Math, asked by zoyamuskan786, 4 months ago

1. If a line intersets "AB & AC of
A ABC at Dr E respectively &
parallel to BC prove that A - AC
AB AC​

Answers

Answered by Anonymous
46

━━━━━━━━━━━━━━━━━━━━

\sf\underbrace{Correct\: Question: }

  • If a line intersects sides AB and AC of a ΔABC at D and E respectively and is parallel to BC, prove that \sf\dfrac{AD}{AB}=\sf\dfrac{AE}{AC}

\sf\underline{Given: }

  • ΔABC, where line intersects sides AB and AC at D and E And DE || BC

\sf\underline{To\:prove:}

  • \sf\dfrac{AD}{AB}=\sf\dfrac{AE}{AC}

\sf\underline{Solution:}

We know that if a line drawn parallel to one side of triangle, intersects the other two sides in distinct points, then it divides the other 2 side in same ratio.

\sf\underline{Therefore :} \sf\dfrac{AD}{DB}=\sf\dfrac{AE}{EC}

\\

ㅤㅤ:⟹ \sf\dfrac{AD}{DB}=\sf\dfrac{AE}{EC}

\\

ㅤㅤ:⟹ \sf\dfrac{DB}{AD}=\sf\dfrac{EC}{AE}

\\

\sf\underline{Adding\:1\:on\: both\:Sides:}

\\

  • ㅤㅤ:⟹\sf\dfrac{DB}{AD}+ 1 =\sf\dfrac{EC}{AE} + 1

\\

  • ㅤㅤ:⟹\sf\dfrac{DB\:+\:AD}{AD}=\sf\dfrac{EC\:+\:AE}{AE}

\\

  • ㅤㅤ:⟹\sf\dfrac{AB}{AD}=\sf\dfrac{AC}{AE}

\\

  • ㅤㅤ:⟹\sf\dfrac{AD}{AB}=\sf\dfrac{AE}{AC}

\\

\underline{\purple{\bf \red{\dag}\:Hence\:Proved}}

━━━━━━━━━━━━━━━━━━━━

Attachments:

BrainlyPopularman: Nice
Answered by mathdude500
6

Answer:

Correct Question

If a line intersects AB & AC of ΔABC at D and E respectively and DE || BC, prove that

\bf \:\dfrac{AD}{AB} = \bf\dfrac{AE}{AC}

Answer

Given:

  • A ΔABC, where line intersects sides AB and AC at D and E and DE || BC

To prove:-

\bf\dfrac{AD}{AB} =\bf\dfrac{AE}{AC}

Solution:-

★In ΔABC and ΔADE

⇛/_ADE = /_ABC [Corresponding angles]

⇛/_AED = /_ACB [Corresponding angles]

∴ ΔABC ~ ΔADE [AA Similarity]

\bf\implies \:\dfrac{AD}{AB} = \bf\dfrac{AE}{AC} \: (using \: CPST)

_____________________________________________

Attachments:
Similar questions