Math, asked by VishnuPriya2801, 16 days ago

1) If A. M., G. M. and H. M. of first and last terms of the series 100, 101, 102,.... n - 1, n are the terms of the series itself then the value of n is (100 < n ≤ 500) :
A) 200 B) 300 C) 400 D) 500

2) The sum of the following series to n terms is:

 \sf  \dfrac{2}{1.2} + \dfrac{5}{2.3} .2 +  \dfrac{10}{3.4} . {2}^{2} +  \dfrac{17}{4.5}  . {2}^{3} ... \\  \\  \sf \: A) \:  \dfrac{n}{n + 1}. {2}^{n + 1}  \\ \\   \sf B) \:  \dfrac{n + 1}{n} . {2}^{n + 1} \\  \\  \sf C) \: \dfrac{n}{n + 1}. {2}^{n}    \\  \\  \sf  D) \: \dfrac{n + 1}{n} . {2}^{n}

Answers

Answered by Anonymous
49

 \huge \text{Question -1 }

1) If A. M., G. M. and H. M. of first and last terms of the series 100, 101, 102,.... n - 1, n are the terms of the series itself then the value of n is

(100 < n ≤ 500) :

  • A) 200

  • B) 300

  • C) 400

  • D) 500

 \bf{Explanation}

 \sf \implies{A.M} =  \frac{100 + n}{2}  \\

\sf \implies{G.M} = 10 \sqrt{n}

\sf \implies{H.M} =  \frac{200n}{100 + n}  \\

\bf{Note}

  • For A.M to be integers ,n must be even

  • For G.M to be integers ,n must be perfect square

\bf{So}

 \sf \implies{n = 4 {k}^{2} }

\sf \implies{H.M  =  \frac{200n}{100 + n} =  \frac{200 \times 4 {k}^{2} }{100 + 4 {k}^{2} }  =  \frac{200  \: {k}^{2} }{25 +  {k}^{2} }   } \\

\bf{Note}

  • For H.M to be integers k² must be divisible by 25 and also ( 100 < n ≤ 500) :

 \sf \implies {k}^{2}  = 50,75,100,125

 \bf \red{Therefore}

 \bf \implies{n = 400}

 \bf{Hence}

\bf \implies \boxed{c) \: n = 400} \: is \: correct \: option

============================

\huge \text{Question -2}

2) The sum of the following series to n terms is:

 \sf \dfrac{2}{1.2} + \dfrac{5}{2.3} .2 + \dfrac{10}{3.4} . {2}^{2} + \dfrac{17}{4.5} . {2}^{3} ... \\ \\ \sf \: A) \: \dfrac{n}{n + 1}. {2}^{n + 1} \\ \\ \sf B) \: \dfrac{n + 1}{n} . {2}^{n + 1} \\ \\ \sf C) \: \dfrac{n}{n + 1}. {2}^{n} \\ \\ \sf D) \: \dfrac{n + 1}{n} . {2}^{n}

\bf{Explanation}

 \bf \implies{The  \: given  \: series \:  is }

 \sf \implies \frac{n}{ \frac{Σ}{r = 1} }  =  \frac{ {r}^{2} + 1 }{r(r + 1)}  \: {2}^{r - 1}   \\

 \sf \implies \frac{n}{ \frac{Σ}{r = 1} }( \frac{ r }{r + 1} \:  {2}^{r}   -  \frac{r - 1}{r}  \:  {2}^{r - 1})  \\

 \bf \red{Therefore}

 \bf \implies \: C) \: \dfrac{n}{n + 1}. {2}^{n} \\

 \bf{Hence}

\bf \implies \boxed{ C) \: \dfrac{n}{n + 1}. {2}^{n} } \: is \: correct \: option

============================

Answered by as3801504
12

Answer:

{ \underline{ \boxed{\mathbb{\red{answer \: in \: attachement}}}}}

Step-by-step explanation:

{ \underline{ \boxed{\mathbb{\purple{hope \: it \: helpful \: for \: you}}}}}

Attachments:
Similar questions