Math, asked by AkashMello, 2 months ago

1] If A = xy , B = yz and C = zx , then find ABC = _____

2] If P = 4×^2 , T = 5x and R = 5y , then PTR/100 = ____

3] write some polynomials of your own and find their products.

4] simplify : 4y (3y +4 )

5] Add the product : a ( a - b ) , b ( b - c ) , c (c - a ) ​

Answers

Answered by RegentCupid
1
1) ABC= x^2 x y^2 x z^2

2) 4x^2 x 5x x 5y/ 100

= 100x^3/100

= x^3

3) x^2 + 3x + 5 , x^2 + x + 3

Product = x^4 + 2x^3 + 8x^2 + 14x + 15

4) 4y(3y+4) = 4y(3y) + 4y(4). [Distributive Property]

= 12y^2 + 16y

5) a( a - b ) + b( b - c ) + c( c - a )
=a^2-ab + b^2 - bc + c^2 - ca
a^2 + b^2 + c^2 - ab - bc - ca

Maths Is Just Wonderful
Answered by IzAnju99
4

 \bf \huge \colorbox {yellow}{★ANSWER ★}

1]

 \bf ABC  = xy \times yz \times zx =  {x}^{2}  {y}^{2}  {z}^{2}

2]

 \bf  \frac{PTR }{100}  =  \frac{ {4x}^{2}  \times 5x \times 5y}{100}  =  \frac{100 {x}^{3} y}{100}  =  {x}^{3} y

3] The product of some polynomials is given below :

 \bf i) abc \times  {a}^{2} bc =  {a}^{3} {b}^{2}  {c}^{2}

 \bf ii) xy \times  {x}^{2}z \times  {yz}^{2}  =  {x}^{3}   {y}^{2}  {z}^{3}

 \bf iii) p \times  {q}^{2}  \times  {r}^{3}  = p {q}^{2}  {r}^{3}

4]

 \bf 4y(3y  + 4) = 4y \times 3y + 4y \times 4 \\\bf \:  =  {12y}^{2} + 16y

5]

 \bf a( a - b) + b(b - c) + c(c - a)

  \bf =  a \times a - a \times b + b \times b - b \times c  + c \times c - c \times a

 \bf =  a \times a - a \times b + b \times b - b \times c + c - c \times a

 \bf  =  {a}^{2}  +  {b}^{2}  +  {c}^{2} - ab - bc - ca

︎︎︎

︎︎︎

︎︎︎

︎︎︎

hope it helps u ra

Similar questions