1. If ax3 – b3 = (3x – 2) (9x2 + 6x + 4), then the value
of a - (b)2 is
(1) 27
(2) 4
(3) 23
(4) 25
Answers
Answer:
1 I think the filanent of this a perfec has a
Answer:
Option (3)
Step-by-step explanation:
Given:-
ax^3 – b^3 = (3x – 2) (9x^2 + 6x + 4)
To find:-
If ax^3 – b^3 = (3x – 2) (9x^2 + 6x + 4), then find the value of a - (b)^2
Solution:-
Given that :-
Method-1:-
ax^3 – b^3 = (3x – 2) (9x^2 + 6x + 4)
=>ax^3-b^3 = 3x(9x^2+6x+4)-2(9x^2+6x+4)
=>(3x×9x^2)+(3x×6x)+(3x×4)-(2×9x^2)-(2×6x)-(2×4)
=>ax^3-b^3 = 27x^3+18x^2+12x-18x^2-12x-8
=>ax^3-b^3 = 27x^3+(18x^2-18x^2)+(12x-12x)+(-8)
=>ax^3-b^3 = 27x^3+0+0-8
=>ax^3-b^3 = 27x^3 - 8
=>ax^3-b^3 = 27 x^3 - 2^3
On comparing both sides then
a = 27
b=2
(or)
Method -2:-
ax^3 – b^3 = (3x – 2) (9x^2 + 6x + 4)
=>ax^3-b^3 = (3x-2)[(3x)^2+(3x)(2)+(2)^2]
It is in the form of (a-b)(a^2+ab+b^2)
where a = 3x and b=2
We know that
(a-b)(a^2+ab+b^2) = a^3 - b^3
=>ax^3 - b^3 = (3x)^3-(2)^3
=>ax^3 -b^3 = 27x^3-2^3
On comparing both sides then
a = 27
b=2
The value of a -b^2
=>27 - 2^2
=>27 - 4
=>23
The value is 23
Answer:-
The value of a - b^2 for the given problem is 23
Option (3)
Used formula:-
- a^3 - b^3= (a-b)(a^2+ab+b^2)