Science, asked by Anonymous, 9 hours ago

1. If cos
  \alpha  + \beta
= 0, then sin
 \alpha  -  \beta
can be reduced
to :​

Answers

Answered by Anonymous
8

Given-

\rm \cos (\alpha + \beta) = 0

To Evaluate-

\rm \sin (\alpha - \beta )

Solution-

\rm \cos (\alpha + \beta) = 0

 \rm \implies \cos (\alpha + \beta) = \cos\:90\degree

\rm \implies \alpha + \beta = 90\degree

\rm \implies \alpha = (90 - \beta)

Now,

\implies\rm \sin (\alpha - \beta )

\implies \rm \sin ((90 - \beta) - \beta )

\implies \rm \sin (90 - 2 \beta )

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (\sin(90-\theta) = \cos \: \theta )

\implies\boxed{ \pink{\cos  \:2\beta} }

Answered by debnathmanju7
1

Answer:

Solution

verified

Verified by Toppr

Correct option is B)

cos(α+β)=0

⇒cos(α+β)=cos90(∵cos0=0)

⇒α+β=90

⇒α=90−β

sin(α−β)

=sin(90−2β)=cos2β (∵sin(90−θ)=cosθ)

Hence option(B) is the correct answer

Similar questions