Math, asked by AiswaryaBalaji, 7 months ago

1) If cos theta= 9/15,then find tan theta,sec theta and sin theta.

2)If cosec theta = 17/8, then find sin theta and cos theta.​

Answers

Answered by akanksha31j
5

Answer:

solve both question in photo

Attachments:
Answered by aryan073
14

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \bigstar  \green{ \bold{ \underline{ \underline{step \: by \:step \: explaination: }}}}

\pink{Given}=\begin{cases} cos\theta=\dfrac{9}{15} \\ \\ tan\theta=? \\ \\ \sec\theta=? \\ \sin\theta =?\end{cases}

  \:  \\  \quad \implies \displaystyle \sf{ cos \theta =  \frac{adjacent \: side}{hypothenuse} } =  \frac{9}{15}

 \:  \:  \bullet \underline{ \bf{ \: by \: using \: pythagoras \: theorem}}

 \quad\implies\displaystyle\sf{(AC)^2=(AB)^2+(BC)^2}

\quad\implies\displaystyle\sf{(15)^2=(9)^2+(BC) ^2}

\quad\implies\displaystyle\sf{225-81=(BC)^2}

\quad\implies\displaystyle\sf{BC=\sqrt{144}}

\quad\implies\boxed{\underline{\displaystyle\sf{BC=12cm}}}

 \:  \implies \displaystyle \sf{tan \theta =  \frac{opposite side}{adjacent \: side}  =  \frac{12}{9}}

 \:  \:  \implies \displaystyle \sf{sec \theta =  \frac{1}{cos \theta}  =  \frac{1}{ \frac{9}{15} }  =  \frac{15}{9} }

 \: \\   \ \: \implies \displaystyle \sf{sin \theta =  \frac{opposite \: side}{hypothenuse}  =  \frac{12}{15} }

\pink{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

\green{Given}=\begin{cases} cosec\theta=\dfrac{17}{8} \\ \\ sin\theta=? \\ \\ cos\theta=? \end{cases}

 \:  \:  \\  \implies \displaystyle \sf{cosec \theta =  \frac{1}{ sin \theta } } =  \frac{1}{ \frac{opposite \: side}{hypothenuse} }

 \:  \:  \implies \displaystyle \sf{sin \theta =  \frac{1}{ \frac{17}{8} }  =  \frac{8}{17} }

 \:  \:  \bullet \displaystyle \bf{hypothenuse = 17}

 \:  \bullet \displaystyle \bf{opposite \: side} = 8

 \:  \:  \bigstar  \underline{\bf{by \: using \: pythagoras \: theorem}}

\implies\displaystyle\sf{(AC)^2=(BC)^2+(AB)^2}

\implies\displaystyle\sf{(17)^2=(8)^2+(AB)^2}

\implies\displaystyle\sf{289-64=(AB)^2}

\implies\displaystyle\sf{225=(AB)^2}

\implies\displaystyle\sf{AB=15cm}

 \:  \:  \implies \displaystyle \sf{ab = cos \theta}

 \:  \: \\   \implies \displaystyle \sf{cos \theta =   \frac{adjacent \: side}{hypothenuse}  =  \frac{15}{17} }

\red{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Similar questions