Math, asked by kalpitadebkrori054, 1 year ago

1. If cosec ø.cos(ø+ 54°) = 1, find the value of ø
so that ø and (ø + 54°) are acute angles.

2. if tan 4∅=cot 5∅, find ∅. given that both 4∅ and 5∅ are acute.

Answers

Answered by AnandMPC
3

Hello mate,

Q1)

 \huge{\red{\star}} {\blue{\underline{\huge{\textsf{Solution}}}}} \huge{\red{\star}}

 \csc( \alpha ) . \cos( 54 + \alpha )  = 1 \\  \\  \cos(54 +   \alpha )  =  \frac{1}{ \csc( \alpha ) }  \\  \\  \cos( 54 + \alpha )  =  \sin( \alpha )  \\  \\  \cos(90 - (36 -  \alpha ) \: \:  )  =  \sin( \alpha )  \\  \\ we  \:  \: know \\  \\  \cos(90 -  \alpha )  =  \sin( \alpha )  \\  \\ so \\  \\  \cos(90 - (36 -  \alpha ) \:  \: )  \\  \\  \sin(36 -  \alpha )  =  \sin( \alpha )  \\  \\ 36 -  \alpha  =  \alpha  \\  \\  \alpha  = 18 \\

Q2)

 \huge{\blue{\star}} {\red{\underline{\huge{\textsf{Solution}}}}} \huge{\blue{\star}}

 \tan(4 \alpha )  =   \cot( 5\alpha )  \\  \\  \tan(4 \alpha )  =  \frac{1}{ \tan( 5\alpha ) }  \\  \\  \tan(4 \alpha ) . \tan( 5\alpha )  = 1 \\  \\   \frac{ \sin( 4\alpha ) . \sin( 5\alpha ) }{ \cos( 4\alpha ).  \cos( 5\alpha ) }  = 1 \\  \\   \sin( 4\alpha ).  \sin( 5\alpha )  =  \cos( 4\alpha ).  \cos( 5\alpha )  \\  \\  \sin( 4\alpha ).  \sin( 5\alpha )   -  \cos( 4\alpha ).  \cos( 5\alpha )  = 0 \\  \\  \cos( 5\alpha +   3\alpha )  = 0 \\  \\ since \\  \\  \sin( \alpha ) . \sin( \beta )  -  \cos( \alpha ) . \cos( \beta )  =  \cos( \alpha  +  \beta )  \\  \\  \cos( 8\alpha )  = 0 \\  \\ we \:  \: know \:  \:  \cos(90)  = 0 \\  \\   \cos( 8\alpha )  = 0 \\  \\ 90 =  8\alpha  \\  \\  \alpha  =  \frac{90}{8}

Hope the solutions help you:)

Similar questions