1. If f (x) = e^x and g(x) = loge x, then show that fog = gof and find f^-1 and g^-1.
Answers
Answered by
0
Step-by-step explanation:
f(x)=e
x
;g(x)=lnx
f∘g(x)=e
lnx
=x;g∘f(x)=ln(e
x
)=x
Hence, f∘g(x)=g∘f(x) proved
Let f(x)=y;g(x)=y
e
x
=y;y=lnx
x=lny;x=e
y
∴f
−1
(x)=lnx;f
−1
(x)=e
x
Answered by
3
Answer:
f(x)=e
x
;g(x)=lnx
f∘g(x)=e
lnx
=x;g∘f(x)=ln(e
x
)=x
Hence, f∘g(x)=g∘f(x) proved
Let f(x)=y;g(x)=y
e
x
=y;y=lnx
x=lny;x=e
y
∴f
−1
(x)=lnx;f
−1
(x)=e
x
Similar questions