1 If f(x, y) = tan-1(xy), find an approximate value of f(1.1,0.8) using the Taylor's
series linear approximation
Answers
Answered by
8
Given :
f(x,y) = tan⁻¹(xy)
f(a,b)=f(1.1,0.8)
To find :
L(x,y)
Solution :
L(x,y) = f(a,b) + fₓ(a,b)(x-a) + fy(a,b)(y-b)
f(a,b) = tan⁻¹(1.1 * 0.8)
f(a,b) = tan⁻¹(0.88)
fₓ(a,b) = 0.451
fy(a,b) = 0.62
L(x,y) = f(a,b) +fₓ (a,b)(x-a) + fy(a,b)(y-b)
L(x,y) = tan⁻¹(0.88) + 0.451(x - 1.1) + 0.62(y - 0.8)
L(x,y) = tan⁻¹(0.88) + 0.451x - 0.496 + 0.62y - 0.496
L(x,y) = tan⁻¹(0.88) + 0.451x + 0.62y
Attachments:
Similar questions
Physics,
2 months ago
Physics,
2 months ago
Social Sciences,
5 months ago
English,
10 months ago
Science,
10 months ago