Math, asked by kasireddy223gmailcom, 7 months ago

1. If logox - logoy = 1 and x + y = 11, then x =​

Answers

Answered by parthsharma777210c
0

Answer:

Consider the given equation.

2log(x

2

y)=3+log x−log y

log (x

2

y)

2

=3+log

y

x

log (x

4

y

2

)−log

y

x

=3

log (x

4

y

2

×

x

y

)=3

log (xy)

3

=3

(xy)

3

=10

3

...........(log

a

b

=x⇒b=a

x

)

xy=10⇒y=

x

10

........ (1)

And (x−y)=3........(2)

substitute equation (1) in (2)

x−

x

10

=3

x

x

2

−10

=3

x

2

−3x−10=0

x

2

−5x+2x−10=0

x(x−5)+2(x−5)=0

(x−5)(x+2)=0

x=5 or −2

But x>0

Hence, x=5 is the answer.

Answered by Anonymous
24

Answer:

Given:-

{ \bullet \:  \: { \sf{ log_{o}x -  log_{o}y = 1}}}

{ \bullet \:  \: { \sf{x + y = 11}}}

Find:-

Value of x??

Solution:-

{ \sf{x + y = 11.....(1)}}

{ \sf{ log_{o}x -  log_{o}y = 1 }}

From the formula ⤵

{ \boxed{ \sf{ log \: a - log \: b = log  \:  \: \frac{a}{b} }}}

{ \sf{ log_{o} (\frac{x}{y} ) = 1 }}

We know that log 10 = 1...

{ \sf{ log_{o} (\frac{x}{y} ) =  log_{o}(10)}}

{ \to{ \sf{ \frac{x}{y }  = 10}}}

{  \to{ \sf{x = 10y}}}

So, Now substitute the value of x in equation (1)

{ \to{ \sf{x + y = 11}}}

{ \to{ \sf{10y + y = 11}}}

{ \to{ \sf{11y = 11}}}

{ \to{ \sf{y =  \frac{11}{11} = 1 }}}

So, the value of y is 1

Substitute value of y in equation (1)

{ \to{ \sf{x + y = 11}}}

{ \to{ \sf{x + 1 = 11}}}

{ \to{ \sf{x = 11 - 1}}}

{ \sf{ \to{x = 10}}}

Therefore, the value of x is 10.

Similar questions