Math, asked by vishvajeetbhore, 3 months ago

1
If Mahesh deposits Rs 25000 in the Bank at 9
p. c.p.a for 2 years, what is the tolal amount he will
get​

Answers

Answered by Anonymous
25

Given:

  • Mahesh deposits Rs 25000 in the Bank at 9% compounded annually for 2 years

To Find:

  • The amount he gets back from the bank

Solution:

Here,

  • Principal ( P ) = Rs 25000
  • Rate of interest ( R ) = 9%
  • Time ( N ) = 2 years

We know,

 \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \dag  \:  \bigg[ \bf A = P \bigg(1 +  \frac{r}{100}  \bigg) {}^{n}  \bigg]

{ \underline{ \bf{ \bigstar \: Substituting \:  the  \: values  : }}}

{ : \implies} \bf \: A = P \bigg[ \: 1 +  \frac{r}{100}  \bigg] {}^{n}  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \bf \: A = 25000 \bigg[ \: 1 +  \frac{9}{100}  \bigg] {}^{2}   \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \bf \: A = 25000 \bigg[ \:  \frac{100}{100}  +  \frac{9}{100}  \bigg] {}^{2}  \\  \\  \\ { : \implies} \bf \: A = 25000 \bigg[ \:  \frac{109}{100}  \bigg] {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \bf \: A =25000 \times  \frac{109}{100}  \times  \frac{109}{100}  \\  \\  \\ { : \implies} \bf \: A =2.5 \times 109 \times 109 \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \\ { : \implies} \bf \: A =2.5 \times 11881 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \bf \: A =Rs.29702.5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence:

  • The amount received back by mahesh is Rs. 29702.5

More to know:

  • Formula to find Amount when Compound half yearly

{ : \implies} \bf \: A = P \bigg[ \: 1 +  \frac{r}{200}  \bigg] {}^{2n}

  • Formula to find Amount when Compound quarterly

{ : \implies} \bf \: A = P \bigg[ \: 1 +  \frac{r}{400}  \bigg] {}^{3n}

  • Formula to find Amount at different rate of interests

{ : \implies} \bf \: A = P \bigg[ \: 1 +  \frac{r _{1} }{100}  \bigg] \bigg[1 +  \frac{r _{2}}{100}  \bigg]  \bigg[ \: 1 +  \frac{r _{3}}{100}  \bigg]

Answered by thebrainlykapil
10

Given :

  • Principal (P) = Rs 25000
  • Time (n) = 2 years
  • Rate (R) = 9% per annum

 \\

To Find :

  • Amount

 \\

Formulas :

\red \bigstar \: {\underline{\boxed{\mathcal {\pmb{\quad Amount \: = \: Principal \: \times \bigg(\:1 \: + \: \dfrac{Rate}{100}\bigg)^{n}\quad}}}}}

 \\

Solution :

{:} \longrightarrow \sf \: Amount \: = \: Principal \: \times \bigg(\:1 \: + \: \dfrac{Rate}{100}\bigg)^{n} \\ \\

 {:} \longrightarrow \sf \: Amount \: = \: 25000 \: \times \bigg(\:1 \: + \: \dfrac{9}{100}\bigg)^{2} \\ \\

{:} \longrightarrow \sf \: Amount \: = \: 25000 \: \times \bigg(\dfrac{109}{100}\bigg)^{2} \\ \\

{:} \longrightarrow \sf \: Amount \: = \: 25000\: \times \: \dfrac{109}{100} \: \times \: \dfrac{109}{100} \\ \\

{:} \longrightarrow \sf \: Amount \: = \: 25 \cancel{000} \: \times \: \dfrac{109}{1 \cancel{00}} \: \times \: \dfrac{109}{10 \cancel{0}} \\ \\

{:} \longrightarrow \sf \: Amount \: = \:   \dfrac{25 \:  \times  \: 109 \:  \times  \: 109}{10} \\ \\

{:} \longrightarrow \sf \: Amount \: = \:  \dfrac{2725 \:  \times  \: 109}{10} \\ \\

{:} \longrightarrow \sf \: Amount \: = \:  \dfrac{297025}{10} \\ \\

{:} \longrightarrow {\underline{\boxed {\mathcal{\pmb{\quad Amount \:  =  \: Rs \: 29702.5 \quad}}}}}

Thus He will get Rs 29702.5 after 9 years.

________________

Similar questions