Math, asked by SurajSRKRocks4700, 8 months ago

1. If nP4 = 14 n-2P3; find the value of n.

Answers

Answered by pulakmath007
15

SOLUTION

GIVEN

 \sf{ \:  {}^{n} P_4 = 14 \times  {}^{n - 2} P_3}

TO DETERMINE

The value of n,

EVALUATION

Here it is given that

 \sf{ \:  {}^{n} P_4 = 14 \times  {}^{n - 2} P_3}

 \implies \displaystyle \sf{ \frac{ n\: !}{( n - 4)\: !} = 14 \times   \frac{ (n - 2)\: !}{( n - 5)\: !} }

 \implies \displaystyle \sf{n(n - 1)(n - 2)(n - 3) = 14 \times (n - 2)(n - 3)(n - 4) }

 \implies \displaystyle \sf{n(n - 1) = 14(n - 4) }

 \implies \displaystyle \sf{ {n}^{2}  - n= 14n - 56 }

 \implies \displaystyle \sf{ {n}^{2}  - 15n +  56 = 0 }

 \implies \displaystyle \sf{ {n}^{2}  - 7n  - 8n+  56 = 0 }

 \implies \displaystyle \sf{n(n - 7) - 8(n - 7) = 0 }

 \implies \displaystyle \sf{(n - 7) (n - 8) = 0 }

 \implies \displaystyle \sf{n = 7 \:  ,\: 8 }

FINAL ANSWER

The required value of n is 7 , 8

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If nPr = 3024 and nCr = 126

then find n and r.

https://brainly.in/question/29044585

2. The value of 20 sigma 50-r C6 is equal to

https://brainly.in/question/25207335

Similar questions