Math, asked by sk9844hcis, 3 months ago

1.if one zero of the polynomial (a²+9)x²+13x+6a is reciprocal of the other,find the value of a..​

Answers

Answered by Anonymous
52

\large\sf\underline{Given\::}

Polynomial :

  • \sf\:(a^{2}+9) x^{2}+13x+6a

Condition given is :

  • One zero of the given polynomial is reciprocal of the other.

\large\sf\underline{To\:find\::}

  • The value of a in the polynomial

\large\sf\underline{Assumption\::}

Let one root of the polynomial be \sf\:\alpha .

Then the other root would be reciprocal of \sf\:\alpha i.e., \bf\:\frac{1}{\alpha} .

\large\sf\underline{Solution\::}

We know that :

\spadesuit \sf\large\color{purple}{Product\:of\:the\:root\:=\frac{c}{a}}

So now we would frame an equation using the above relation.

  • Product of the root here means \sf\:\alpha \times \frac{1}{\alpha}

Now how would we find c and a . For finding it's value we would compare the given polynomial \sf\:(a^{2}+9) x^{2}+13x+6a with \sf\:ax^{2}+bx+c=0 .

Comparing we get :

  • a = \sf\:(a^{2}+9)

  • c = \sf\:6a

So now let's quickly frame the equation :

\sf\twoheadrightarrow\:\alpha \times \frac{1}{\alpha}=\frac{6a}{(a^{2}+9)}

  • Multiplying the terms in LHS

\sf\twoheadrightarrow\:\frac{\alpha}{\alpha}=\frac{6a}{(a^{2}+9)}

  • Reducing the fraction in LHS to lower terms

\sf\twoheadrightarrow\:\cancel{\frac{\alpha}{\alpha}}=\frac{6a}{(a^{2}+9)}

\sf\twoheadrightarrow\:1=\frac{6a}{(a^{2}+9)}

  • Now cross multiplying

\sf\twoheadrightarrow\:a^{2}+9=6a

  • Transposing +6a to other side , it becomes -6a

\sf\twoheadrightarrow\:a^{2}+9-6a=0

\sf\twoheadrightarrow\:a^{2}-6a+9=0

We got an quadratic equation so let's factorise it using middle term breaking method.

  • Middle term i.e., 6a can be splitted as -3a and -3a

\sf\twoheadrightarrow\:a^{2}-(3+3)a+9=0

\sf\twoheadrightarrow\:a^{2}-3a-3a+9=0

  • Taking a and 3 common from first two terms and last two terms

\sf\twoheadrightarrow\:a(a-3)-3(a-3)=0

  • Taking (a - 3) as common from whole terms

\sf\twoheadrightarrow\:(a-3)(a-3)=0

\sf\therefore\:Value\:of\:a\:

\sf\leadsto\:(a-3) =0

\sf\leadsto\:a-3=0

\small{\underline{\boxed{\mathrm\red{\leadsto\:a\:=\:3}}}}

_______________________

!! Hope it helps !!

Answered by Sona048
2

Answer:

HOW ARE YOU.

AAJ BHOUT BARISH HO RAHA HAI OR MOSSOM BHI BHOUT THANDA HAI.

Similar questions