1. if S1 is the sum of an A.P. of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then find S1/S2
Answers
Answered by
2
here,
odd numbers are =1,3,5,7-----nth term
S1=n/2(2*1+(n-1)2)
=n/2(2+2n-2)
n/2(2n)=n^2---------------------1
S2=n/2(2*0+(n-1)2)
n/2(2n-2)
2(n^2-n)/2
n^2-n-----------------------------2
S1/S2
n^2/n(n-1)
n/n-1
HOPE IT HELPS!
odd numbers are =1,3,5,7-----nth term
S1=n/2(2*1+(n-1)2)
=n/2(2+2n-2)
n/2(2n)=n^2---------------------1
S2=n/2(2*0+(n-1)2)
n/2(2n-2)
2(n^2-n)/2
n^2-n-----------------------------2
S1/S2
n^2/n(n-1)
n/n-1
HOPE IT HELPS!
Similar questions