1) If sec tan ook then proove that
sino-k²-1
k ²+1
Answers
Given data :
if sec θ + tan θ = k then prove that, sin θ = (k² - 1)/(k² + 1)
Proof :
⟹ sin θ = (k² - 1)/(k² + 1)
Here we know, sec θ + tan θ = k
Hence, now
⟹ sin θ = {(sec θ + tan θ)² - 1}/{(sec θ + tan θ)² + 1}
⟹ sin θ = {sec² θ + tan² θ + 2 * sec θ * tan θ - 1}/{sec² θ + tan² θ + 2 * sec θ * tan θ + 1}
⟹ sin θ = {(sec² θ - 1 ) + tan² θ + 2 * sec θ * tan θ }/{sec² θ + (tan² θ + 1) + 2 * sec θ * tan θ }
Here, we know sec² θ + tan² θ = 1
∴ sec² θ - 1 = tan² θ and tan² θ + 1 = sec² θ
⟹ sin θ = { tan² θ + tan² θ + 2 * sec θ * tan θ }/{sec² θ + sec² θ + 2 * sec θ * tan θ }
⟹ sin θ = {2 * tan² θ + 2 * sec θ * tan θ }/ {2 * sec² θ + 2 * sec θ * tan θ }
Now,
⟹ sin θ = {2 * tan θ (sec θ + tan θ) }/ {2 *sec θ (sec θ + tan θ) }
[Here, sec θ + tan θ cancel from numerator and denominator]
⟹ sin θ = {2 * tan θ}/{2 * sec θ}
[Here, 2 get cancel from numerator and denominator]
⟹ sin θ = tan θ/sec θ
Here, we know, 1/sec θ = cos θ
⟹ sin θ = tan θ/sec θ
⟹ sin θ = tan θ * cos θ
Here, we know, tan θ = sin θ/cos θ
⟹ sin θ = sin θ/cos θ * cos θ
[Here, cos θ cancelled]
⟹ sin θ = sin θ
Answer : Therefore, if sec θ + tan θ = k then, sin θ = (k² - 1)/(k² + 1)
Answer:
Sin (x) is an odd function because sin(-x) = -sin(x). It's graph is symmetric to the origin.
Step-by-step explanation:
Sin (x) is an odd function because sin(-x) = -sin(x). It's graph is symmetric to the origin.