1) If sec (x²-6x +80)° = cosec (40-5x)°, find the value of x.
2) If sin (β+70°) = cos(50°-α),then find the value of sin(α-β).
3) Find the simplified value of sin43°sec47°-cot41°cot49°.
4) The value of sin42°cos48°+cos42°sin48° is one of the following:
a)0 b)1 c)sin6° d)cos6°
5) In ∆ABC, ∠ABC= 90°, AB=6cm,BC = 8cm.If a perpendicular BD is drawn from B on AC, find the length of BD.
Answers
Answer:
Question :-
1) If sec (x² - 6x + 80)° = cosec (40 - 5x)°, find the value of x.
Solution :-
Since, sec (x² - 6x + 80)° = cosec (40 - 5x)°
➪ (x² - 6x + 80)° + (40 - 5x)° = 90°
➪ x² - 6x + 80 + 40 - 5x - 90 = 0
➪ x² - 6x - 5x + 80 + 40 - 90 = 0
➪ x² - 11x + 120 - 90 = 0
➪ x² - 11x + 30 = 0
➪ x² - (6 + 5)x + 30 = 0
➪ x² - 6x - 5x + 30 = 0
➪ x(x - 6) - 5(x - 6) = 0
➪ (x - 6) (x - 5) = 0
➪ (x - 6) = 0
➪ x - 6 = 0
➪ x = 6
Either,
➪ (x - 5) = 0
➪ x - 5 = 0
➪ x = 5
∴ The value of x is 6, 5
Question :-
2) If sin (β + 70°) = cos (50° - α), then find the value of sin (α - β).
Solution :-
Since, sin (β + 70°) = cos (50° - α)
➪ sin (β + 70°) = sin [90° - (50° - α)]
➪ β + 70° = 90° - (50° - α)
➪ β + 70° - 90° + 50° - α = 0
➪ β - α + 30° = 0
➪ α - β = 30°
∴ sin (α - β)
➪ sin 30°
➪ 1/2
∴ The value of sin (α - β) is 1/2
Question :-
3) Find the simplified value of sin 43° sec 47° - cot 41° cot 49°.
Solution :-
➪ sin 43° sec 47° - cot 41° cot 49°
➭ sin 43° sec (90° - 43°) - cot 41° cot (90° - 41°)
➭ sin 43° cosec 43° - cot 41° tan 41°
➭ sin 43° × 1/sin 43° - cot 41° × 1/cot 41°
➭ 1 - 1
➭ 0
∴ The value of sin 43° sec 47° - cot 41° cot 49° is 0
Question :-
4) The value of sin 42° cos 48° + cos 42° sin 48° is one of the following:
a) 0 b) 1 c) sin 6° d) cos 6°.
Solution :-
➪ sin 42° cos 48° + cos 42° sin 48°
➭ sin 42° cos (90° - 42°) + cos 42° sin (90° - 42°)
➭ sin 42° sin 42° + cos 42° cos 42°
➭ sin² 42° + cos² 42°
➭ 1
∴ (b) is correct
Question :-
5) In ∆ ABC, ∠ABC = 90°, AB = 6 cm, BC = 8 cm. If a perpendicular BD is drawn from B on AC, find the length of BD.
Given :-
- In ∆ ABC , ∠ABC = 90°, AB = 6cm, BC = 8 cm. If a perpendicular BD is drawn from B on AC,
Find Out :-
- The length of BD
Solution :-
In ∆ ABC, by Pythagoras theorem,
AC²
➪ AB² + BC²
➪ 6² + 8²
➪ 6 × 6 + 8 × 8
➪ 36 + 64
➪ 100
➪ 10²
∴ AC
➪ 10²
Now, if AD = x
DC
➪ AC - AD
➪ 10 - x
and, BD = y
Now, in ∆ ABC,
➪AD² + BD²
➭ AB²
➪ x² + y² = 6²
➭ x² + y² = 6 × 6
∴ x² + y² = 36. . . .(i)
Again, in ∆ BDC,
➪ BD² + DC²
➭ BC²
➪ y² + (10 - x)² = 8²
➭ y² + (10 - x)² = 8 × 8
∴ y² + (10 - x)² = 64
➪ y² + {(10)² - 2 × 10 × x + (x)²} = 64
∴ y² + 100 - 20x + x² = 64. . . .(ii)
Subtracting (i) from (ii)
➪ (y² + 100 - 20x + x²) - (x² + y²)
➭ 64 - 36
➭ 28
or,
➪ 20x = 100 - 28
➪ 20x = 72
➪ x = 72/20
➪ x = 3.6
Putting in (i), (3.6)² + y² = 36
➪ y² = 36 - (3.6)²
➪ y² = 36 - 12.96
➪ y² = 23.04
➪ y² = (4.8)
➪ y = 4.8
∴ The length of BD = 4.8 cm
Formula used :-
➪ (a - b)²
➭ a² - 2ab + b²