Math, asked by anishraza118, 12 hours ago

- 1. If Sin (A + B) = 1 and Cos(A - B) = 1, then the value of A and B are respectively equals to * O 30°, 60° , O 40°, 50° O 45°, 45° O None of these. ​

Answers

Answered by anindyaadhikari13
7

\textsf{\large{\underline{Solution}:}}

Given That:

→ sin(A + B) = 1

→ cos(A - B) = 1

We know that:

→ sin(90°) = 1

→ sin(A + B) = sin(90°)

→ A + B = 90°

Again:

→ cos(0°) = 1

→ cos(A - B) = cos(0°)

→ A - B = 0°

→ A = B

Therefore:

→ A + B = 90°

→ A = B = 90°/2

→ A = B = 45°

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

1. Relationship between sides and T-Ratios.

  • sin(x) = Height/Hypotenuse
  • cos(x) = Base/Hypotenuse
  • tan(x) = Height/Base
  • cot(x) = Base/Height
  • sec(x) = Hypotenuse/Base
  • cosec(x) = Hypotenuse/Height

2. Square formulae.

  • sin²x + cos²x = 1
  • cosec²x - cot²x = 1
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)

4. Cofunction identities.

  • sin(90° - x) = cos(x)
  • cos(90° - x) = sin(x)
  • cosec(90° - x) = sec(x)
  • sec(90° - x) = cosec(x)
  • tan(90° - x) = cot(x)
  • cot(90° - x) = tan(x)

5. Even odd identities.

  • sin(-x) = - sin(x)
  • cos(-x) = cos(x)
  • tan(-x) = -tan(x)
Answered by jaswasri2006
0

Given That :

➸ Sin (A+B) = 1

➸ Cos (A-B) = 1

 \\  \\

To Find :

Values of A,B

 \\  \\

Solution :

as we know that,

Sin 90° = 1 & cos 0° = 1

 \\

by solving,

 \\

⇒ Sin (A + B) = Sin 90°

⇒ A + B = 90° ____eqⁿ(1)

and,

⇒ Cos (A - B) = Cos 0°

⇒ A - B = 0

⇒ A = B ____eq(2)

 \\  \\

By Substituting eq(2) in eq(1). we get ,

 \\

Values of

  • A = 45°
  • B = 45°
Similar questions