- 1. If Sin (A + B) = 1 and Cos(A - B) = 1, then the value of A and B are respectively equals to * O 30°, 60° , O 40°, 50° O 45°, 45° O None of these.
Answers
Answered by
7
Given That:
→ sin(A + B) = 1
→ cos(A - B) = 1
We know that:
→ sin(90°) = 1
→ sin(A + B) = sin(90°)
→ A + B = 90°
Again:
→ cos(0°) = 1
→ cos(A - B) = cos(0°)
→ A - B = 0°
→ A = B
Therefore:
→ A + B = 90°
→ A = B = 90°/2
→ A = B = 45°
★ Which is our required answer.
1. Relationship between sides and T-Ratios.
- sin(x) = Height/Hypotenuse
- cos(x) = Base/Hypotenuse
- tan(x) = Height/Base
- cot(x) = Base/Height
- sec(x) = Hypotenuse/Base
- cosec(x) = Hypotenuse/Height
2. Square formulae.
- sin²x + cos²x = 1
- cosec²x - cot²x = 1
- sec²x - tan²x = 1
3. Reciprocal Relationship.
- sin(x) = 1/cosec(x)
- cos(x) = 1/sec(x)
- tan(x) = 1/cot(x)
4. Cofunction identities.
- sin(90° - x) = cos(x)
- cos(90° - x) = sin(x)
- cosec(90° - x) = sec(x)
- sec(90° - x) = cosec(x)
- tan(90° - x) = cot(x)
- cot(90° - x) = tan(x)
5. Even odd identities.
- sin(-x) = - sin(x)
- cos(-x) = cos(x)
- tan(-x) = -tan(x)
Answered by
0
Given That :
➸ Sin (A+B) = 1
➸ Cos (A-B) = 1
To Find :
Values of A,B
Solution :
as we know that,
Sin 90° = 1 & cos 0° = 1
by solving,
⇒ Sin (A + B) = Sin 90°
⇒ A + B = 90° ____eqⁿ(1)
and,
⇒ Cos (A - B) = Cos 0°
⇒ A - B = 0
⇒ A = B ____eqⁿ(2)
By Substituting eq(2) in eq(1). we get ,
Values of
- A = 45°
- B = 45°
Similar questions