Math, asked by adityashinde444555, 3 months ago

1. If sine
7
25
find the values of coso and tano.

Answers

Answered by Anonymous
26

Answer:

Correct Question:

  • If SinA = 7/25 , Find Values of CosA & TanA

Solution:

 : { \implies{ \sf{SinA =  \frac{7}{25}  =  \frac{opp}{hyp} }}} \\

  • For finding CosA and TanA, We have to find Adjacent Side by using Pythagoras theorm.

 \boxed{ \sf{Pythagoras \:   theorm : Hyp² = Opp² + Adj² }}

 :{ \implies{ \sf{Hyp² = Adj² + Opp²}}} \\  \\  : { \implies{ \sf{ {25}^{2} =Adj² +  {7}^{2}   }}} \\  \\  : { \implies{ \sf{ {25}^{2}  -  {7}^{2}  = Adj²}}} \\  \\  : { \implies{ \sf{Adj² = 625 - 49}}} \\  \\  : { \implies{ \sf{Adj² = 576}}} \\  \\  : { \implies{ \sf{Adjacent \: side = 24cm}}}

  • So, Adjacent Side = 24 Cm

 \to{ \sf{CosA =  \frac{adjacent} {hypotenuse}  =  \frac{24}{25} }} \\

  \to{ \sf{TanA =  \frac{opposite}{adjacent}  =  \frac{7}{24} }} \\

Attachments:
Similar questions