Math, asked by monilkangare, 26 days ago


1. If tan x = -3/4 and x is in the second quadrant, then what is the value of
sin x. cos x?​

Answers

Answered by SparklingBoy
60

▪Given :-

 \large \pink{ \bf tan \: x =  \dfrac{ - 3}{ \: 4} } \\  \bf and \\  \pink{ \bf x \in2nd \: quadrant}

___________________________

▪To Find :-

  \mathfrak{\text{T}he \: value \: of \: } \\   \large\red{ \bf sin \: x.cos \: x}

___________________________

▪Solution :-

  \sf tan \: x = -   \dfrac{3}{4}  \\  \\  \sf {tan}^{2} x =  \frac{9}{16}  \\   \\   \sf \sec {}^{2} x  = 1 +  \frac{9}{16}  = \frac{25}{16}

 \sf sec \: x =  \sqrt{ \frac{25}{16 } }  \\  \\  \sf sec \: x =  \pm \frac{5}{4}

But sec x Can't be positive As x lies in 2nd quadrant

Hence,

 \sf sec \: x =   - \dfrac{5}{4}  \\  \\  \implies  \Large  \purple{ \bf  \underline{ \boxed{ \bf cos \: x =   - \frac{4}{5} }}}

As,  \bf {sin}^{2} x + cos {}^{2} x = 1

So,

 \sf sin \: x =  \sqrt{1 -  {cos}^{2}  \: x}  \\  \\  =  \sf  \sqrt{1 -  \frac{16}{25} }  \\  \\  =  \sqrt{ \frac{9}{25} }  \\   \\  \sf sin \: x =  \pm \frac{3}{5}

As x lies in 2nd quadrant So sin x Can't be Negative

  \implies\Large  \purple{ \bf  \underline{ \boxed{ \bf sin \: x =   \frac{3}{5} }}}

So,

 \sf sin \: x.cos \: x =  \frac{3}{5} \times ( -  \frac{4}{5}  ) \\  \\   \implies\Large  \purple{ \bf  \underline{ \boxed{ \bf sin \: x. cos \: x =   - \frac{12}{25} }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Itzheartcracer
34

Given :-

If tan x = -3/4 and x is in the second quadrant,

To Find :-

sin x × cos x

Solution :-

On squaring both sides

(tan² x) = (-3/4)²

tan²x = (-3²/4²)

tan²x = 9/16

Now

We know that

sec² x = 1 + tan²x

sec²x = 1 + 9/16

sec²x = 16 + 9/16

sec²x = 25/16

sec x = √(25/16)

sec x = -5/4

Now cos x = 1/sec

cos x = 1/(-5/4)

cos x = -4/5

sin² x + cos² x = 1

sin² x + (-4/5)² = 1

sin² x + 16/25 = 1

sin² x = 1 - 16/25

sin x = √(25 - 16/25)

sin x = √(9/25)

sin x = 3/5

Now

sin x × cos x = 3/5 × -4/5

sin x × cos x = -12/25

Similar questions