Math, asked by js0473128, 8 months ago

1.If the length of one side and
one diagonal of a rhombus are
20 mand 24 m respectively,
then its area is *​

Answers

Answered by SahilKumar1406
1

Answer:

Diagonal of rhombus bisect each other.

24/2=12cm

From Pythagoras theorem,

12^2+x^2=20^2

144+x^2=400

x^2=400-144

x=√256=16

Other diagonal=16(2)=32

Area=1/2×(32)×(24)

=384

Answered by TheVenomGirl
19

AnswEr :

⠀⠀⠀⠀⠀If one side of the rhombus is 20 m and another diagonal measures 24 m then, the area of the rhombus would be 384 cm².

 \\

ExplanaTion :

 \\

\sf Here \:  \begin{cases} \sf  S ide = 20 \: m \\  \\  \sf  Diagonal  = 24 \: m \: \end{cases}

 \\

Let us assume ABCD as a rhombus,

 \\

we know that,

 \\

  • All sides of the rhombus are equal .[ Property of a rhombus ]

 \\

  • AB = BC = CD = DA = 20 m

 \\

Also, BD = 24 m [Diagonal]

 \\

In ΔABD,

 \\

\star \: { \boxed{ \sf{ \purple{Semi \:  perimeter =  \dfrac{A + B +C}{2}  }}}}

Using the above formula,

\sf  : \implies \:  \: Semi \:  perimeter =  \dfrac{20+ 20 + 24}{2}   \\  \\  \\  \\

\sf  : \implies \:  \: Semi \:  perimeter =  \dfrac{64}{2}  \\  \\  \\  \\

\sf  : \implies \:  \:  \blue{Semi \:  perimeter =  32}  \\  \\

Now,

━━━━━━━━━━━━

\star \: { \boxed{ \sf{ \red{Area  \: of \:  \triangle ABD =  \sqrt{s(s - a)(s - b)(s - c)}  }}}}\\  \\

Using the formula,

:\implies \sf \:  \:  \: Area  =  \sqrt{32 \times (32 - 20)(32 - 20)(32 - 24)} \\  \\  \\  \\

:\implies \sf \:  \:  \: Area  =  \sqrt{32 \times 12 \times 12  \times 8} \\  \\  \\  \\

:\implies \sf \:  \:  \: Area  =  \sqrt{4 \times 8 \times 8 \times  {12}^{2} } \\  \\  \\  \\

:\implies \sf \:  \:  \: Area  =  \sqrt{ {2}^{2}   \times  {8}^{2}  \times  {12}^{2} } \\  \\  \\  \\

:\implies \sf \:  \:  \: Area  =  2 \times 8 \times 12 \\  \\  \\  \\

:\implies \sf \:  \:  \: { \green{Area  =  192 \:  {m}^{2}}}  \\  \\

━━━━━━━━━━━━

 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \star \: { \underline{ \sf{Area \:  of \:  rhombus :}}}

\sf : \implies \:  \:  Area (ABCD)  = Area (ABD) + Area (BCD) \\  \\  \\  \\

\sf : \implies \:  \:  Area (ABCD)  = 192 + 192 \\  \\  \\  \\

\sf : \implies \:  \: { \red{ Area (ABCD)  = 384 \:  {m}^{2}}}  \\  \\

Therefore, Area of the rhombus is 384 cm².

━━━━━━━━━━━━

Attachments:

Anonymous: Good :D
Similar questions