Math, asked by tanya00739, 9 months ago

1.. If the nth term of an AP is (4n+1), find the sum of the first 15 terms of thi
AP. Also find the sum of its n terms.
2. The sum of the first n terms of an AP is given by Sn = (2n² +5n). Find the
nth term of the AP.

Answers

Answered by Anonymous
6

\large{\underline{\tt{\purple{Given:-}}}}

  • ✦ nth term of AP is (4n+1)

\large{\underline{\tt{\purple{To\:Find:-}}}}

  • ✦sum of 15th terms.

\huge{\underline{\tt{\green{Solution:-}}}}

  • nth term of AP is (4n+1)

1st term = 4 ×1+1

⠀⠀⠀⠀⠀➝ 4 +1

⠀⠀⠀⠀⠀➝ 5

2nd term = 4 ×2 +1

⠀⠀⠀⠀⠀➝ 8 +1

⠀⠀⠀⠀⠀➝ 9

3rd term = 4×3 +1

⠀⠀⠀⠀⠀➝ 12 +1

⠀⠀⠀⠀⠀➝ 13

So,

AP = 5 ,9 ,13......

  • First term (a) = 5
  • common difference (d) = 9-5 = 4

Sum of 15th terms of AP :-

\bf\green{S_n = \frac{n}{2}(2a + (n - 1)d)}

 \mapsto \:  \: \rm \:  S_{15 }= \frac{15}{2}(2 \times 5 + (15- 1)4)  \\  \\  \mapsto \:  \: \rm \:  S_{15 } =  \frac{15}{2}(10+ 14 \times 4) \\  \\\mapsto \:  \: \rm \:  S_{15 } =  \frac{15}{2} ( 10+ 56 ) \\  \\ \mapsto \:  \: \rm \:  S_{15 } =  \frac{15}{{\cancel{2}}}\times{\cancel{66}} \\  \\ \mapsto \:  \: \rm \:  S_{15 } = 15  \times 33 \\  \\\mapsto \:  \: \rm \:  S_{15 } = 495 \\  \\\mapsto \:  \: \bf \:  \red{ S_{15 } = 495 } \\\\

Sum of nth term:-

\mapsto\rm\:S_n=\frac{n}{2}[2\times5+(n-1)4]\\\\ \mapsto \:  \:  \rm \: s_ n=\frac{n}{2}[10+4n-4]\\\\ \mapsto \:  \:  \rm \: s_ n=\frac{n}{2}[6+4n]\\\\ \mapsto \:  \:  \rm \: s_ n=3n+2n^2\\\\ \mapsto \:  \:  \bf \: s_ n=n(3+2n)

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{1. \ The \ sum \ of \ first \ 15 \ terms \ of}

\sf{2. \ The \ n^{th} \ term \ of \ AP \ is \ (4n+3).}

\sf{AP \ is \ 495.}

\sf\orange{Given:}

\sf{\implies{1. \ n^{th} \ term \ of \ AP \  is \ (4n+1)}}

\sf{\implies{2. \ Sn=(2n^{2}+5n)}}

\sf\pink{To \ find:}

\sf{1. \ Sum \ of \ first \ 15 \ terms.}

\sf{2. \ n^{th} \ term \ of \ the \ A.P.}

\sf\green{\underline{\underline{Solution:}}}

\sf{1.}

\sf{\implies{tn=4n+1}}

\sf{\therefore{t1=4(1)+1}}

\sf{\implies{\therefore{t1=5}}}

\sf{t15=4(15)+1}

\sf{t15=60+1}

\sf{\implies{\therefore{t15=61}}}

\sf{Sn=\frac{n}{2}[t1+tn]... formula}

\sf{\therefore{S15=\frac{15}{2}[5+61]}}

\sf{\therefore{S15=\frac{15}{2}\times66}}

\sf{\therefore{S15=15\times33}}

\sf{\therefore{S15=495}}

\sf\purple{\tt{\therefore{The \ sum \ of \ first \ 15 \ terms \ of}}}

\sf\purple{\tt{AP \ is \ 495.}}

\sf{2.}

\sf{\implies{Sn=(2n^{2}+5n)...(1)}}

\sf{\therefore{S1=[2(1)^{2}+5(1)]}}

\sf{\therefore{S1=2+5}}

\sf{\implies{\therefore{S1=7}}}

\sf{\implies{\therefore{t1=7}}}

\sf{Sn=\frac{n}{2}[t1+tn]…formula...(2)}

\sf{From \ (1) \ and \ (2)}

\sf{\therefore{2n^{2}+5n=\frac{n}{2}[t1+tn]}}

\sf{\therefore{n(2n+5)=\frac{n}{2}[7+tn]}}

\sf{\therefore{\frac{2}{n}\times \ n(2n+5)=7+tn}}

\sf{\therefore{7+tn=2(2n+5)}}

\sf{\therefore{7+tn=4n+10}}

\sf{\therefore{tn=4n+10-7}}

\sf{\implies{\therefore{tn=4n+3}}}

\sf\purple{\tt{\therefore{The \ n^{th} \ term \ of \ AP \ is \ (4n+3).}}}

Similar questions