Math, asked by Anonymous, 1 month ago

1. If the radius of a circle is 4.2 cm, compute its area and circumference.

2. What is the area of a circle whose circumference is 44 cm?

3. Calculate the area of a sector of angle 60°. Given, the circle is having a radius of 6 cm.​

Answers

Answered by aviralkachhal007
5

\huge{ \underline{\boxed{\red{ \color{red}{\textsf {\textbf{Qu}{\color{blue}{\textbf {\textsf{est}}{\color{green}{\textbf{\textsf{ion}}}{\color{orange}{\textsf{\textbf{~:-}}}}}}}}}}}}}

1. If the radius of a circle is 4.2 cm, compute its area and circumference.

2. What is the area of a circle whose circumference is 44 cm?

3. Calculate the area of a sector of angle 60°. Given, the circle is having a radius of 6 cm.

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\huge{\boxed{\bullet{\color{orange}{\mathfrak{Answers}}}\bullet}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:

Answer 1 :-

Radius of circle = 4.2 cm

Area of circle = πr²

\frac{22}{7} × (4.2)²

\frac{22}{\cancel{7}} × {\cancel{17.64}}

✒ 22 × 2.52

✒ 55.44 cm²

Now,

Circumference = 2πr

✒ 2 × \frac{22}{\cancel{7}} × {\cancel{4.2}}

✒ 2 × 22 × 0.6

✒ 44 × 0.6

✒ 26.4 cm

∴ Area = 55.44 cm² and Circumference = 26.4 cm

Answer 2 :-

Circumference of circle = 44 cm

Also, Circumference = 2πr

✒ 2πr = 44 cm

✒ 2 × \frac{22}{7} × r = 44

✒ r = \frac{44×7}{2×22}

✒ r = 7 cm

Now,

Are of circle = πr²

\frac{22}{7} × (7)²

\frac{22}{\cancel{7}} × {\cancel{49}}

✒ 22 × 7

✒ 154 cm²

∴ Are if circle is 154 cm²

Answer 3 :-

∅ = 60°

Radius = 6 cm

Now,

Area of sector = \frac{∅}{360°} × πr²

\frac{\cancel{60°}}{\cancel{360°}} × \frac{22}{7} × (6)²

\frac{1}{\cancel{6}} × \frac{22}{7} × {\cancel{36}}

✒ 1 × \frac{22}{7} × 6

\frac{22×6}{7}

\frac{\cancel{132}}{\cancel{7}}

✒ 18.85 cm² ( approx )

∴ Area of sector = 18.85 cm² ( approx )

Answered by Anonymous
26

Answer:

 \tt \red{Question ⤵}</p><p>

❄️If the radius of a circle is 4.2 cm, compute its area and circumference.

 \tt \red{Solution ⤵}

Given, Radius (r)= 4.2 cm

Circumference = \red{ 2\pi \: r}

 =  &gt;  \: 2 \times  \frac{22}{7}  \times 4.2 \\

 =  &gt; ( \frac{44}{10}  \times 6) =  \frac{246}{10} \\

 =  &gt; 26.4cm

Therefore ,

 \tt  \: circumference = \pink{ 26.4 cm}

NOW ,

Area \: = \red{ \pi \:  {r}^{2} }

 =  &gt;  \:  \frac{22}{7}  \times 4.2 \times 4.2 \\

 \frac{22 \times 6 \times 42}{10 \times 10}  =  \frac{5544}{100} = 55.44 {cm}^{2}  \\

Therefore ,

 \tt \: Area = \pink{55.44  {cm}^{2} }

_______________________________

 \tt \red{Question ⤵}

❄️ What is the area of a circle whose circumference is 44 cm?

 \tt \red{Solution ⤵}

Given,

Circumference of circle = 2πr

=> 44 = 2πr

r =  \frac{44}{2\pi}  =  \frac{44}{2}  \times  \frac{7}{22}  = 7cm \\

Now,

 \tt \: Area \:  of \:  circle = \red {\pi {r}^{2} }

 =  &gt;  \frac{22}{7}  \times 7 \times 7 = 154 {cm}^{2}  \\

Hence,

Area \:  of  \: circle =  \pink{154 {cm}^{2} }

____________________________&,

 \tt \red{Question ⤵}

❄️Calculate the area of a sector of angle 60°. Given, the circle is having a radius of 6 cm.

 \tt \red{Solution ⤵}

Given,

Radius = r = 6 cm

& angle of the sector = 60°

We know that,

Area \:  of  \: the \:  sector =  \frac{θ}{360°}  \times \pi {r}^{2}  \\

 =  &gt;  \frac{60}{360}  \times  \frac{22}{7}  \times ( {6)}^{2}   \\

 =  &gt;  \frac{1}{6}  \times  \frac{22}{7} \times 36 \\

 =  &gt;  \frac{132}{7}  {cm}^{2}

Similar questions