Math, asked by Adityaboy01, 2 months ago

(1) If the roots of quadratic equation 2x2 + 6x + k = 0 are real and
equal then find the value of k.
tien​

Answers

Answered by likitha20052
1

Answer:

k=36

please mark me as the brainliest.

Step-by-step explanation:

from the question, the roots of quadratic equation 2x2 + 6x + k = 0 are real and

equal then , a=2. b=6. c =k

they are real and equal

therefore , b²-4ac=0

6²-4(2×k)=0

36-8k=0

36-k=0/8

36-k=0

-k=-36

therefore k = 36

Answered by AestheticSky
10

❍ we are given that the equation\sf  2x²+6x+k = 0 have equal and real roots. All we have to find is the value of k.

Let's get started

___________________

We know that :-

  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar{\underline {\boxed{  \pink{\frak {D(discriminant) =  {b}^{2} - 4ac }} }}} \:  \:  \:  \:  \:

  • here, a,b, and c are coefficient of x², coefficient of x and constant respectively.
  • In the given equation :-

 \:  \:  \:  \:  \mapsto \frak{b = 6}

 \:  \:  \:  \:  \mapsto \frak{a= 2}

 \:  \:  \:  \:  \mapsto \frak{c = k}

Now, it is given if the equation has equal and real roots, then it's D(discriminant) = 0

which means that :-

   : \implies \underline {\boxed {\sf  {b}^{2}  - 4ac = 0}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag  \: \underline \frak{substituing \: the \: values \: in \: equation : -  }

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \leadsto  \bf  {b}^{2}  - 4ac = 0

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \leadsto \bf  {6}^{2}  - 4(2)(k) = 0

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \leadsto  \bf 36 - 8k = 0

  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \leadsto \bf k =  \dfrac{ \cancel{36 ^{9} }}{ \cancel8_2}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \leadsto{\boxed   {\pink{{\bf{ k = \frac{9}{2} }}}}} \bigstar

I hope it's beneficial :D

Similar questions