English, asked by adepukiranmaya, 4 months ago

1.
If the sides of a triangle are 5,6,10, then the length of the median of biggest side is​

Answers

Answered by sheikhfarhana678
0

Answer:

I really Dont know the answer

Answered by OfficialPk
25

your question has mistake....plzzz correct it

  • if sides of triangle are 5 6 10 then the square of length of the median of biggest side

\mathsf{Using \: Apollonius \: Theorem, \: Median \: of \: triangle \: is \: calculated}

m_a\mathsf{= \: \frac{1}{2} \sqrt{2{b}^{2} + 2{c}^{2} - {a}^{2}}}

m_b\mathsf{= \: \frac{1}{2} \sqrt{2{a}^{2} + 2{c}^{2} - {b}^{2}}}

m_c\mathsf{= \: \frac{1}{2} \sqrt{2{a}^{2} + 2{b}^{2} - {c}^{2}}}

\mathsf\green{☆ \: We \: need \: to \: find \: length \: of \:  median \: of \:  longest \: side}

\mathsf\red{Given}

\mathsf\red{a \: = \: 10 \: \: b \: = \: 5 \: \: c \: = \: 6}

\mathsf\red{then ,}

m_a\mathsf{= \: \frac{1}{2} \sqrt{2{b}^{2} + 2{c}^{2} - {a}^{2}}}

m_a\mathsf{= \: \frac{1}{2} \sqrt{2×{5}^{2} + 2×{6}^{2} - {10}^{2}}}

m_a\mathsf{= \: \frac{1}{2} \times \sqrt{2(25) + 2(36) - (100)}}

m_a\mathsf{= \: \frac{1}{2} \times \sqrt{50+72-100}}

m_a\mathsf{= \: \frac{1}{2} \times \sqrt{22}}

\mathsf\red{☆ \: squaring \: on \: both \: sides \: we \: get }

{m_ a}^{2}\mathsf{= \: \frac{1}{4} \times {22}}

{m_a}^{2}\mathsf{= \: 5.5}

Similar questions