Math, asked by vaishu200352, 11 months ago

1) If w is a complex cube root of unity, show
that
i) (2-w)(2-w×w)=7
​please answer me fast

Answers

Answered by acam222001
43

(2-W)(2-W×W)=7

  1. let (2-W)(2-W×W) is L.H.S and 7 is R.H.S
  2. then solve L.H.S
Attachments:
Answered by harendrachoubay
12

(2-\omega)(2-\omega \times \omega)=7, proved.

Step-by-step explanation:

We have,

(2-\omega)(2-\omega \times \omega)

Prove that, (2-\omega)(2-\omega \times \omega)=7

L.H.S. =(2-\omega)(2-\omega \times \omega)

=(2-\omega)(2-\omega^{2} )

=2(2-\omega^{2} )-\omega(2-\omega^{2} )

=4-2\omega^{2} -2\omega+\omega^{3}

=4-2(\omega^{2} +\omega)+1

[ ∵ \omega^{3}=1]

=5-2(-1)

[ ∵ 1+\omega +\omega^{2}=0]

=7=R.H.S, proved.

Similar questions