1.) if x + 1 is a factor of ax^3 + 2x^2 - x + 3a - 7, then find the value of a.
2.) if p(x) = x^3 - 4x^2 + x + 6 then show that p(3) = 0 & hence factorise p(x).
Answers
Answered by
7
Q1)
Answer
➡
☑ the given equation is
(ax^3 + 2x^2 - x + 3a - 7 ) having factor (x + 1 )
(x + 2 ) is the factor of the equation therefor x = (- 1)
put x = -1 in the equation
(ax^3 + 2x^2 - x + 3a - 7 )
⟹(a(-1)^3 + 2(-1)^2-(-1)+3(a)-7
⟹ -a + (-2) +1+ (3a) - 7
⟹ -a - 2 +1+3a - 7
⟹ -a - 8 + 3a
⟹2a - 8
⟹a = 4
Verification
put the value of a and x in a given equation ,and equate the equation with zero
⟹(ax^3 + 2x^2 - x + 3a - 7 ) =0
⟹((4)(-1)^3+2(-1)^2-(-1)+3(4)-7=0
⟹((-4)+(-2)+1+12-7=0
⟹(-6+13-7)=0
⟹(-13+13)=0
⟹0=0
Hence verified
________________________________
Q2)
Answer
☑
given polynomial is
p(x) = x^3 - 4x^2 + x + 6
However,
we have to prove p(3)=0
put x = 3
p(3)=(3)^3-4(3)^2+(3)+6
⟹27-36+9
⟹27-27
⟹0
p(3)=0
Hence proved
________________________________
Similar questions