Math, asked by preetijha19, 7 months ago

1
If x +1/x=2
Then find
 \sqrt{x + 1 \div  \sqrt{x} }


Answers

Answered by Anonymous
27

{\underline{\underline{\red{\sf{Given:}}}}}

  • \sf{x+\dfrac{1}{x}=2}

{\underline{\underline{\red{\sf{To\:Find:}}}}}

  • The value of \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}

{\underline{\underline{\red{\sf{Answer:}}}}}

We are here given that \sf{x+\dfrac{1}{x}=2}.

Now ,let \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}} = k.

\sf{\implies \sqrt{\dfrac{x+1}{\sqrt{x}}}=k}

Squaring both sides ;

\sf{\implies (\sqrt{\dfrac{x+1}{\sqrt{x}}})^{2}=k^{2}}

\sf{\implies \dfrac{x+1}{\sqrt{x}}=k^{2}}

\sf{\implies \dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}=k^{2}}

\sf{\implies\dfrac{1}{\sqrt{x}}+\sqrt{x}=k^{2}}

Again squaring both sides;

\sf{\implies (\dfrac{1}{\sqrt{x}}+\sqrt{x})^{2}=(k^{2})^{2}}

\sf{\implies (\sqrt{x})^{2}+(\dfrac{1}{\sqrt{x}})^{2}+2\times\sqrt{x}\times\dfrac{1}{\sqrt{x}}=k^{4}}

\sf{\implies x+\dfrac{1}{x}+2=k^{4}}

\sf{\implies 2+2=k^{4}}

\sf{\implies k^{4}=4}

\sf{\implies k=\sqrt[4]{4}}

\sf{\implies k=2^{2\times\frac{1}{4}}}

\sf{\implies k=2^{\frac{1}{2}}}

{\underline{\boxed{\red{\sf{\leadsto k=\sqrt{2}}}}}}

Hence we found k as 2 .

Earlier we had assumed that the value of \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}} =k .

Hence \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}} =2.

Answered by PᴀʀᴛʜTɪᴡᴀʀʏ
46

Answer:

Given:

\sf{x+\dfrac{1}{x}=2}x+

x

1

=2

{\underline{\underline{\red{\sf{To\:Find:}}}}}

ToFind:

The value of \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}

x

x+1

{\underline{\underline{\red{\sf{Answer:}}}}}

Answer:

We are here given that \sf{x+\dfrac{1}{x}=2}x+

x

1

=2 .

Now ,let \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}

x

x+1

= k.

\sf{\implies \sqrt{\dfrac{x+1}{\sqrt{x}}}=k}⟹

x

x+1

=k

Squaring both sides ;

\sf{\implies (\sqrt{\dfrac{x+1}{\sqrt{x}}})^{2}=k^{2}}⟹(

x

x+1

)

2

=k

2

\sf{\implies \dfrac{x+1}{\sqrt{x}}=k^{2}}⟹

x

x+1

=k

2

\sf{\implies \dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}=k^{2}}⟹

x

x

+

x

1

=k

2

\sf{\implies\dfrac{1}{\sqrt{x}}+\sqrt{x}=k^{2}}⟹

x

1

+

x

=k

2

Again squaring both sides;

\sf{\implies (\dfrac{1}{\sqrt{x}}+\sqrt{x})^{2}=(k^{2})^{2}}⟹(

x

1

+

x

)

2

=(k

2

)

2

\sf{\implies (\sqrt{x})^{2}+(\dfrac{1}{\sqrt{x}})^{2}+2\times\sqrt{x}\times\dfrac{1}{\sqrt{x}}=k^{4}}⟹(

x

)

2

+(

x

1

)

2

+2×

x

×

x

1

=k

4

\sf{\implies x+\dfrac{1}{x}+2=k^{4}}⟹x+

x

1

+2=k

4

\sf{\implies 2+2=k^{4}}⟹2+2=k

4

\sf{\implies k^{4}=4}⟹k

4

=4

\sf{\implies k=\sqrt[4]{4}}⟹k=

4

4

\sf{\implies k=2^{2\times\frac{1}{4}}}⟹k=2

4

1

\sf{\implies k=2^{\frac{1}{2}}}⟹k=2

2

1

{\underline{\boxed{\red{\sf{\leadsto k=\sqrt{2}}}}}}

⇝k=

2

Hence we found k as √2 .

Earlier we had assumed that the value of \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}

x

x+1

=k .

Hence \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}

x

x+1

=√2.

Similar questions