1
If x +1/x=2
Then find
Answers
- The value of
We are here given that .
Now ,let = k.
Squaring both sides ;
Again squaring both sides;
Hence we found k as √2 .
Earlier we had assumed that the value of =k .
Hence =√2.
Answer:
Given:
\sf{x+\dfrac{1}{x}=2}x+
x
1
=2
{\underline{\underline{\red{\sf{To\:Find:}}}}}
ToFind:
The value of \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}
x
x+1
{\underline{\underline{\red{\sf{Answer:}}}}}
Answer:
We are here given that \sf{x+\dfrac{1}{x}=2}x+
x
1
=2 .
Now ,let \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}
x
x+1
= k.
\sf{\implies \sqrt{\dfrac{x+1}{\sqrt{x}}}=k}⟹
x
x+1
=k
Squaring both sides ;
\sf{\implies (\sqrt{\dfrac{x+1}{\sqrt{x}}})^{2}=k^{2}}⟹(
x
x+1
)
2
=k
2
\sf{\implies \dfrac{x+1}{\sqrt{x}}=k^{2}}⟹
x
x+1
=k
2
\sf{\implies \dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}=k^{2}}⟹
x
x
+
x
1
=k
2
\sf{\implies\dfrac{1}{\sqrt{x}}+\sqrt{x}=k^{2}}⟹
x
1
+
x
=k
2
Again squaring both sides;
\sf{\implies (\dfrac{1}{\sqrt{x}}+\sqrt{x})^{2}=(k^{2})^{2}}⟹(
x
1
+
x
)
2
=(k
2
)
2
\sf{\implies (\sqrt{x})^{2}+(\dfrac{1}{\sqrt{x}})^{2}+2\times\sqrt{x}\times\dfrac{1}{\sqrt{x}}=k^{4}}⟹(
x
)
2
+(
x
1
)
2
+2×
x
×
x
1
=k
4
\sf{\implies x+\dfrac{1}{x}+2=k^{4}}⟹x+
x
1
+2=k
4
\sf{\implies 2+2=k^{4}}⟹2+2=k
4
\sf{\implies k^{4}=4}⟹k
4
=4
\sf{\implies k=\sqrt[4]{4}}⟹k=
4
4
\sf{\implies k=2^{2\times\frac{1}{4}}}⟹k=2
2×
4
1
\sf{\implies k=2^{\frac{1}{2}}}⟹k=2
2
1
{\underline{\boxed{\red{\sf{\leadsto k=\sqrt{2}}}}}}
⇝k=
2
Hence we found k as √2 .
Earlier we had assumed that the value of \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}
x
x+1
=k .
Hence \sf{\sqrt{\dfrac{x+1}{\sqrt{x}}}}
x
x+1
=√2.