Math, asked by ashmit7789, 8 months ago

1. If x 2sin , y 2cos 1

2 2

    then find the value of x + y. 2

2. ABC is a right angled at A, then find the value of tan B × tan C. 2

3. Prove the identity:

(cosec A – sin A ) (sec A – cos A) (tan A + cot A) = 1 2

4. Prove the identity, tan cot cos sec 2 2 2 2 A  A  2  ec A A 2

5. If cot (A + B) = 3 and cot (B –A) = 3

1

, find A and B. 2

6. Prove the identity, A B

A B

cot cot

tan tan





= tan A. tan B 3

7. In PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm.

Determine the values of sin P, cos P and tan P. 3

8. Evaluate : 2sin230o

.tan60o – 3cos260o

.sec230o

. 3

9. Prove the identity, A

A

A

A

sin

1 cos

1 cos

sin 





= 2 cosec A. 3

10. Prove the identity, A

A

1 tan

cos



+ A

A

1 cot

sin



= cos A + sin A 4

11. Prove the identity: 2 2

sinθ cosθ 1 2 sin .cos

sinθ cosθ sin θ cos θ

   ​

Answers

Answered by shouryajha2808
0

Answer:Given: tan B = 2sin B sinBcosB = 2sin B cos B = 12 B = 600 ... In a right angled triangle ABC, right angled at C, tanB = 2sinB , then sin A+sinB is equal to ... If sinx+siny=a and cosx+cosy=b show that ... From the following figure, Find the value of sinC? 1 ... sinθ=1312​,cos∅=178​ find tan2θ,cot2∅​,sec(θ+ϕ).

Step-by-step explanation:

Similar questions