1. If x 2sin , y 2cos 1
2 2
then find the value of x + y. 2
2. ABC is a right angled at A, then find the value of tan B × tan C. 2
3. Prove the identity:
(cosec A – sin A ) (sec A – cos A) (tan A + cot A) = 1 2
4. Prove the identity, tan cot cos sec 2 2 2 2 A A 2 ec A A 2
5. If cot (A + B) = 3 and cot (B –A) = 3
1
, find A and B. 2
6. Prove the identity, A B
A B
cot cot
tan tan
= tan A. tan B 3
7. In PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm.
Determine the values of sin P, cos P and tan P. 3
8. Evaluate : 2sin230o
.tan60o – 3cos260o
.sec230o
. 3
9. Prove the identity, A
A
A
A
sin
1 cos
1 cos
sin
= 2 cosec A. 3
10. Prove the identity, A
A
1 tan
cos
+ A
A
1 cot
sin
= cos A + sin A 4
11. Prove the identity: 2 2
sinθ cosθ 1 2 sin .cos
sinθ cosθ sin θ cos θ
Answers
Answered by
0
Answer:Given: tan B = 2sin B sinBcosB = 2sin B cos B = 12 B = 600 ... In a right angled triangle ABC, right angled at C, tanB = 2sinB , then sin A+sinB is equal to ... If sinx+siny=a and cosx+cosy=b show that ... From the following figure, Find the value of sinC? 1 ... sinθ=1312,cos∅=178 find tan2θ,cot2∅,sec(θ+ϕ).
Step-by-step explanation:
Similar questions