Math, asked by jagannathpani765, 2 months ago

1. If x + 2y + 3z = 0 and
x3 + 4y3 + 9z3 = 18xyz; evaluate :
(x+2y)2/xy+(2y + 3z)2/yz+(3z + x)2/zx ?

Answers

Answered by VishnuPriya2801
157

Answer:-

Given:-

x + 2y + 3z = 0

  • 2y + 3z = - x -- equation (1)

  • x + 2y = - 3z -- equation (2)

  • x + 3z = - 2y -- equation (3).

Also given that,

x³ + 4y³ + 9z³ = 18xyz

⟹ (x³ + 4y³ + 9z³)/xyz = 18 -- equation (4)

We have to find:-

 \implies \sf \:  \dfrac{(x + 2y) ^{2} }{xy}  +  \dfrac{(2y + 3z) ^{2} }{yz}  + \dfrac{(3z + x) ^{2} }{xz}

Putting the respective values from equations (1) , (2) & (3) we get,

 \implies \sf \:  \dfrac{( - 3z) ^{2} }{xy} +  \dfrac{( - x) ^{2} }{yz}   +  \dfrac{( - 2y) ^{2} }{xz}

Taking LCM we get,

 \implies \sf \:  \dfrac{(yz)(xz)(9 {z}^{2} )  +(xy)(xz)(x ^{2} ) + (xy)(yz)( 4y ^{2} )}{xy \times yz \times xz}  \\  \\  \\ \implies \sf \:  \dfrac{ 9xy {z}^{4}  +  {x}^{4}yz + 4xy ^{4}z }{(xyz) ^{2} }  \\  \\  \\ \implies \sf \: \frac{xyz( 9 {z}^{3}  +  {x}^{3}  + 4y ^{3}  ) }{(xyz)(xyz)}    \\  \\  \\ \implies \sf \:  \frac{ {x}^{3}  + 4 {y}^{3}  + 9 {z}^{3} }{xyz}  \\  \\  \\ \implies \underline{  \underline{ \red{\sf \: 18}}} \:  \:  \:  \:  \:  \sf \: [ \because \: from \: equation \: (4)]

Answered by Anonymous
147

Answer:

Given :-

\mapsto x + 2y + 3z = 0

\mapsto x³ + 4y³ + 9z³ = 18xyz

To Evaluate :-

\mapsto \sf \dfrac{{(x + 2y)}^{2}}{xy} + \dfrac{{(2y + 3z)}^{2}}{yz} + \dfrac{{(3z + x)}^{2}}{zx}\\

Solution :-

Given equation :

\Rightarrow \sf x + 2y + 3z =\: 0

From this equation we get,

{\small{\bold{\purple{\underline{\bigstar\: In\: the\: {1}^{{st}}\: case\: :-}}}}}

\implies \sf x + 2y + 3z =\: 0

\implies \sf \bold{\green{x + 2y =\: - 3z\: ------\: (Equation\: No\: 1)}}\\

{\small{\bold{\purple{\underline{\bigstar\: In\: the\: {2}^{{nd}}\: case\: :-}}}}}

\implies \sf x + 2y + 3z =\: 0

\implies \sf \bold{\green{2y + 3z =\: - x\: ------\:  (Equation\: No\: 2)}}\\

{\small{\bold{\purple{\underline{\bigstar\: In\: the\: {3}^{{rd}}\: case\: :-}}}}}

\implies \sf x + 2y + 3z =\: 0

\implies \sf\bold{\green{3z + x=\: - 2y\: ------\: (Equation\: No\: 3)}}\\

And,

\Rightarrow \sf x^3 + 4y^3 + 9z^3 =\: 18xyz

Now,

\dashrightarrow \sf \dfrac{{(x + 2y)}^{2}}{xy} + \dfrac{{(2y + 3z)}^{2}}{yz} + \dfrac{{(3z + x)}^{2}}{zx}\\

By putting :

  • x + 2y = - 3z
  • 2y + 3z = - x
  • 3z + x = - 2y

\dashrightarrow \sf \dfrac{{(- 3z)}^{2}}{xy} + \dfrac{{(- x)}^{2}}{yz} + \dfrac{{(- 2y)}^{2}}{zx}\\

\dashrightarrow \sf \dfrac{9z^2}{xy} + \dfrac{x^2}{yz} + \dfrac{4y^2}{zx}\\

\dashrightarrow \sf \dfrac{(yz)(xz)(9z^2) + (xy)(xz)(x^2) + (xy)(yz)(4y^2)}{xy \times yz \times xz}\\

\dashrightarrow \sf \dfrac{(9xyz^4) + (x^4 yz) + 4xy^4z)}{(xyz)^2}\\

\dashrightarrow \sf \dfrac{\cancel{xyz}(9z^3 + x^3 + 4y^3)}{\cancel{(xyz)} \times (xyz)}\\

\dashrightarrow \sf \dfrac{9z^3 + x^3 + 4y^3}{xyz}\\

\dashrightarrow \sf \dfrac{x^3 + 4y^3 + 9z^3}{xyz}

Here,

  • x³ + 4y³ + 9z³ = 18xyz

\dashrightarrow \sf \dfrac{18\cancel{xyz}}{\cancel{xyz}}

\dashrightarrow \sf \dfrac{18}{1}

\dashrightarrow \sf\boxed{\bold{\red{18}}}

\therefore \sf \dfrac{{(x + 2y)}^{2}}{xy} + \dfrac{{(2y + 3z)}^{2}}{yz} + \dfrac{{(3z + x)}^{2}}{zx} =\: \bold{\red{18}}.\\

Similar questions