Math, asked by Aadil4678, 4 months ago

1) If x = √ 7 + √3/√7 - √3 and xy = 1 let us show that, x2+xy+y2/x2-xy+y2 =12/11​

Answers

Answered by misscutie94
34

Answer:

Given :-

  • x = \dfrac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} and xy = 1.

Prove That :-

  • \dfrac{x² + xy + y²}{x² - xy + y²} =\: \dfrac{12}{11}

Solution :-

\because  x =\: \dfrac{√7 + √3}{√7 - √3} and xy =\: 1

Now,

 y =\:  \dfrac{1}{x} =\: \dfrac{√7 - √3}{√7 + √3}

Then,

 x + y =\: \dfrac{√7 + √3}{√7 - √3} + \dfrac{√7 - √3}{√7 + √3}

\dfrac{(√7 + √3)² + (√7 - √3)²}{(√7 - √3)(√7 + √3)}

\dfrac{(7 + 3 + 2√7) + (7 + 3 - 2 × √7 × √3)}{(√7)² - (√3)²}

\dfrac{20}{7 - 3}

\dfrac{20}{4}

5

Now,

\dfrac{x² + xy + y²}{x² - xy + y²}

\dfrac{(x + y)² - xy}{(x + y)² - 3xy}

\dfrac{(√5)² - 1}{(5)² - 3 × 1}

\dfrac{25 - 1}{25 - 3}

\dfrac{24}{22}

\dfrac{12}{11}

Hence, Proved


Aadil4678: Good
Answered by Rajeshwari8025
4

Step-by-step explanation:

Answer :-

25 - 1/ 25 - 3

24/22

12/11

proved:- 12/11


Aadil4678: Good
Similar questions