Math, asked by roshan6669, 1 day ago

1. If x cos0=1 and tan@=y, then x²-y² is​

Answers

Answered by savage8973
0

Step-by-step explanation:

Given : If x\cos A=1xcosA=1 and \tan A=ytanA=y

To find : The expression x^2-y^2x

2

−y

2

?

Solution :

Taking x and y values,

x\cos A=1xcosA=1

x=\frac{1}{\cos A}x=

cosA

1

x=\sec Ax=secA

and y=\tan Ay=tanA

Substitute in the expression,

x^2-y^2=(\sec A)^2-(\tan A)^2x

2

−y

2

=(secA)

2

−(tanA)

2

x^2-y^2=\sec^2 A-\tan^2 Ax

2

−y

2

=sec

2

A−tan

2

A

Using trigonometric identity, \sec^2 A-\tan^2 A=1sec

2

A−tan

2

A=1

So, x^2-y^2=1x

2

−y

2

=1

Answered by tausiffuad20
0

Answer:

1

Step-by-step explanation:

x cos0=1

=>x=1/cos©=sec©

x2-y2=sec^2©-tan^2©=1 [sec^©-tan^©=1]

it would be your humble consideration to mark me as the brainliest.

Similar questions