1. If x cos0=1 and tan@=y, then x²-y² is
Answers
Answered by
0
Step-by-step explanation:
Given : If x\cos A=1xcosA=1 and \tan A=ytanA=y
To find : The expression x^2-y^2x
2
−y
2
?
Solution :
Taking x and y values,
x\cos A=1xcosA=1
x=\frac{1}{\cos A}x=
cosA
1
x=\sec Ax=secA
and y=\tan Ay=tanA
Substitute in the expression,
x^2-y^2=(\sec A)^2-(\tan A)^2x
2
−y
2
=(secA)
2
−(tanA)
2
x^2-y^2=\sec^2 A-\tan^2 Ax
2
−y
2
=sec
2
A−tan
2
A
Using trigonometric identity, \sec^2 A-\tan^2 A=1sec
2
A−tan
2
A=1
So, x^2-y^2=1x
2
−y
2
=1
Answered by
0
Answer:
1
Step-by-step explanation:
x cos0=1
=>x=1/cos©=sec©
x2-y2=sec^2©-tan^2©=1 [sec^©-tan^©=1]
it would be your humble consideration to mark me as the brainliest.
Similar questions