Math, asked by vijaya3484, 9 months ago

1) If x+y =2 and xy=1 then find x^4+x^4​

Answers

Answered by thakurkavita98263
0

Answer:

(4-y^4)+(4-y^4)

Step-by-step explanation:

Answered by Cynefin
58

 \huge{ \bold{ \underline{ \star{ \red{Question...}}}}}

⏭ If x+y =2 and xy=1 then find x^4+y^4..✏

 \huge{ \bold{ \underline{ \star{ \red{ \: Answer...}}}}}

✳x^4+y^4=2

 \huge{ \underline{ \star{ \bold{ \red{ \: Solution...}}}}}

✔GIVEN...

✏x+y=2

✏xy=1

✔TO FIND...

✏x^4+y^4

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

   : \large{ \sf{ \implies{x + y = 2}}} \\  \sf{ \purple{ \underline{squaring \: both \: sides}}} \\  \\   : \large{ \sf{ \implies{(x + y) {}^{2}  = 4}}} \\   \\   : \large{ \sf{ \implies{ {x}^{2}  + 2xy +  {y}^{2}  = 4}}} \\  \\  :  \large{ \sf{ \implies{ {x}^{2}  +  {y}^{2}  + 2(1) = 4}}} \\  \sf{ \green{ \underline{given \: xy  = 1}}} \\  \\  \large{ \sf{ \implies{ {x}^{2}  +  {y}^{2}  = 2}}}..........(1) \\  \sf{ \purple{ \underline{squaring \: both \: sides}}} \\  \\  :  \large{ \sf{ \implies{ { ({x}^{2} })^{2}  + 2   {x}^{2}  {y}^{2}  +  { ({y}^{2} })^{2}  = 4}}} \\  \\   :  \large{ \sf{ \implies{ {x}^{4}  + 2(xy) {}^{2}  +  {y}^{4}  = 4}}} \\  \\  :  \large{ \sf{ \implies{ {x}^{4}  + 2(1) {}^{2}  +  {y}^{4}  = 4}}} \\  \sf{ \green{ \underline{given \: xy = 1}}} \\  \\  \large{ \sf{ \implies{ \red{ \boxed{ {x}^{4}  +  {y}^{4}  = 2}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \large{ \bold{ \underline{ \pink{required \: answer \: is \: 2}}}}

Similar questions