Math, asked by sjsjshhsajauushu, 1 year ago


1. If x+y+z=0, then show that x^2+y^2+z^2=-2(xy+yz+zx).
7

2. If a=3+b, prove that a^3-b^3-9ab-27.

3. Factorise 9 x^2-12x+4.

4. Factorise 343+27t^3

Please give the answer​

Answers

Answered by Vyomsingh
3

Answer:

Step-by-step explanation:

Attachments:
Answered by amankumaraman11
4
  1. If x+y+z=0, then show that x²+y²+z²= -2(xy+yz+zx).

➡️➡️

Here,

 \rm \huge{}\to x+y+z=0 \\  \\  \boxed{ \bf squaring \:  \: both \:  \: sides} \\  \\ \Large \tt  \to{(x + y +  z )}^{2}  =  {0}^{2}

 \small{ \rm{ \blue{ Identity \:   Required   :} \green \to  }}  \rm{  \orange{{(a +  b+ c)}^{2} }= \purple{  {a}^{2}   +  {b}^{2} +  {c}^{2} + 2(ab + bc + ac)}  }

So,

 \to \rm \small {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(xy + yz + xz) = 0 \\ \to  \rm \small {x}^{2}  +  {y}^{2}  +  {z}^{2}   = 0 -  \{ 2(xy + yz + xz) \} \\ \to\underline{ \underline{ \rm \small {x}^{2}  +  {y}^{2}  +  {z}^{2}    =  \:  \:  - 2(xy + yz + xz) }} \\

\tt \orange{  HENCE<strong> </strong>\: \: \: PROVED }\red{!!}

2. If a=3+b, Prove that a³ -b³ - 9ab = 27.

➡➡

Here,

\rm \huge {a=3+b} \\  \\ \boxed{ \text{ Cubing on both sides, }}  \\  \tt {a}^{3}   =  {(3 + b)}^{3}  \\   \small\tt {a}^{3}  =  {(3)}^{3}  +  {(b)}^{3}  + 3(3)(b) \{3 + b \} \\  \tt {a}^{3}  = 27 +  {b}^{3}  + 9b(3 + b) \\  \tt  {a}^{3} = 27 +  {b}^{3}   + 9b(a) \:  \:  \:  \:  \:    \:  \:  \: \{ \because  \:  a = 3 + b\} \\ \rm  {a}^{3}  = 27 +  {b}^{3}  + 9ab \\ \boxed{ \rm transposing \:  \: terms} \\  \rm  \underline{ \underline{{a}^{3}  -  {b}^{3}  - 9ab = 27}}

 \tt \green{ HENCE \: \: \: PROVED} \pink{ !! }

3. Factorise 9x² - 12x + 4.

 \to \rm {9x}^{2}  - 12x + 4 \\  \to \rm {9x}^{2}  - 6x - 6x + 4 \\  \to \rm3x(3x - 2) - 2(3x - 2) \\  \to \underline{\underline{ \rm \red{(3x - 2)(3x - 2)}}}

4. Factorise 343 + 27t³

Here,

  • Polynomial is in form of a³ + b³ , the identity used will be

 \tt  \orange{{a}^{3}    + {b}^{3}  }=  \purple{(a + b)( {a}^{2} +  {b}^{2} - ab  )}

Now,

 \to\rm343 + {27t}^{3}  \\  \to  \rm{(7)}^{3}  +  {(3t)}^{3}  \\  \to \rm(7 + 3t) \{ {(7)}^{2}  +  {(3t)}^{2} - (7)(3t)  \} \\  \to \rm\underline{\underline{ \red{(7 +3 t)(49 +  {9t}^{2}  - 21t)}}}

Similar questions