Math, asked by vardhanreddyv0, 11 months ago

1. If y(x) satisfies the equation x sin y + x = y, then the value of y"(
\pi
)=

Answers

Answered by AditiHegde
0

Given:

y(x) satisfies the equation  x sin y + x = y

To find:

The value of y"( π)

Solution:

y=x sin y + x

differentiating on both sides, we get,

\dfrac{dy}{dx}=\dfrac{d}{dx}(xsiny+x)

\dfrac{dy}{dx}=\dfrac{d}{dx}\left(x\sin \left(y\right)\right)+\dfrac{d}{dx}\left(x\right)

\dfrac{dy}{dx}=\sin \left(y\right)+1

again differentiating on both sides, we get,

\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(\sin \left(y\right)+1)

\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\sin \left(x\right)\right)+\dfrac{d}{dx}\left(1\right)

\dfrac{d^2y}{dx^2}=\cos \left(x\right)+0

\dfrac{d^2y}{dx^2}=\cos \left(x\right)

⇒ y" = cos (x)

y" (π) = cos (π)

y" (π) = -1

Similar questions