درة
1. In a right angled triangle ABC, angleA is acute, angleB = 90° and tan A =3/5
Find
1) sin A
ii) cosecA - Cota
Answers
sinA = 3/√34, cosecA-cotA = (√34+5)/3
Step-by-step explanation:
We are given that, tanA = 3/5. This means:
⇒ Perpendicular/Base = 3/5
Let the Perpendicular be 3k and base be 5k. Now, let us find the hypotenuse of the right angled triangle by Pythagoras Theorem.
(Pythagoras theorem: In a right-angled triangle, the square of hypotenuse is equal to the sum of square of other two sides.)
On finding Hypotenuse, we get:
⇒ (Hypotenuse)² = (Perpendicular)²+(Base)²
⇒ (Hypotenuse)² = (3k)²+(5k)²
⇒ (Hypotenuse)² = 9k²+25k²
⇒ (Hypotenuse)² = 34k²
⇒ Hypotenuse = √34k²
⇒ Hypotenuse = √34 k
Therefore, the Hypotenuse of the triangle is √34 k. Now, we know that:
1) sinA = Perpendicular/Hypotenuse
⇒ sinA = 3k/√34 k
⇒ sinA = 3/√34
Hence, sinA = 3/√34
2) cosecA = Hypotenuse/Perpendicular
⇒ cosecA = √34 k/3k
⇒ cosecA = √34/3
We also know that:
→ CotA = 1/tanA
→ CotA = 1/(3/5)
→ CotA = 5/3
Hence, let's come to the question:
⇒ cosecA - cotA = √34/3+5/3
⇒ cosecA - cotA = (√34+5)/3
Hence, the value of cosecA - cotA = (√34+5)/3.