1) In AABC prove that
i) sin2A+ sin2B - sin2C = 4cos A cosB sin
Answers
Answer:
Given:
A+B+C = 180°
=> A+B = 180° - C
=> sin(A+B) = sin(180-C)
= sinC -----(1)
______________________
We know that,
i))SinC - SinD = 2cos[(C+D)/2]sin[(C-D)/2]
ii) SinC + sinD = 2sin[(C+D)/2]cos[(C+D)/2]
iii) Sin2B = 2sinBcosB
_______________________
Here,
LHS = sin2A+sin2B-sin2C
= sin2A-sin2C+sin2B
=2cos[(2A+2C)/2]sin[(2A-2C)/2]+sin2B
= 2cos(A+C)sin(A-C)+2sinBcosB
= -2cosBsin(A-C)+2sinBcosB
= (2cosB)[-sin(A-C)-sinB]
= 2cosB[-sin(A-C)+sin(A+C)]
= 2cosB[sin(A+C)-sin(A-C)]
= 2cosB{2cos[(A+C+A-C)/2]sin[(A+C-A+C)/2]}
= 4cosBcosAsinC
= 4cosAcosBsinC
= RHS
Step-by-step explanation:
please mark it as brainliest
Solution : L.H.S. = sin2A + sin2B - sin2c
= 2sin(A + B) cos (A-B) -2sinC cosC
= 2sin (π-C) cos (A-B) - 2sinC cos [π - (A+R)
= 2sinC cos (A - B) + 2 sinC cos(A+B)
= 2sin cos (A - B) + cos(A+B)
- 2 sinc.2cos (A-B+A+B/2) cos(A-B-A-B /2)
= 4 sinC cosA cosB
= 4 cosA cosB sinC
= R.H.S.