1. In ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :
(i) sin A, cos A
(ii) sin C, cos C
2. In Fig. 8.13, find tan P – cot R.
3. If sin A =
3
,
4
calculate cos A and tan A.
4. Given 15 cot A = 8, find sin A and sec A.
5. Given sec =
13
,
12 calculate all other trigonometric ratios.
6. If A and B are acute angles such that cos A = cos B, then show that A = B.
7. If cot =
7
,
8
evaluate : (i) (1 sin )(1 sin )
,
(1 cos ) (1 cos )
(ii) cot2
8. If 3 cot A = 4, check whether
2
2
1 tan A
1 + tan A
= cos2
A – sin2A or not.
9. In triangle ABC, right-angled at B, if tan A =
1
,
3
find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
10. In PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of
sin P, cos P and tan P.
11. State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A =
12
5
for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin =
4
3
for some angle .
Answers
Answered by
1
Answer:
for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin =
4
3
for some angle .
Similar questions