1)In adjoining fig PQ 0 BC, AD BC then find following ratio A
i)
A(APQB)
A(APBC)
ii)
A(APBC
A(GABC
AAABC)
AAADC)
A(A ADC)
iv)
A(APQC)
B
Q
D C
Answers
Answered by
6
Step-by-step explanation:
In adjoining figure PQ⊥BC,AD⊥ BC then find following ratios.
(i) A(ΔPQB)/A(ΔPBC) = BQ/BC
(ii)A(ΔPBC)/A(ΔABC) = PQ/AD
(iii)A(ΔABC)/A(ΔADC) = BC/DC
(iv)A(ΔADC)/ A(ΔPQC) = (DC * AD) / (QC * QP)
Step-by-step explanation:
A(ΔPQB) = (1/2) BQ * PQ
A(ΔPBC) = (1/2) BC * PQ
=> A(ΔPQB)/A(ΔPBC) = BQ/BC
A(ΔPBC) = (1/2) BC * PQ
A(ΔABC)
= (1/2) BC * AD
A(ΔPBC)/A(ΔABC) = PQ/AD
A(ΔABC) = (1/2) BC * AD
A(ΔADC) = (1/2) DC * AD
A(ΔABC)/A(ΔADC) = BC/DC
A(ΔADC) = (1/2) DC * AD
A(ΔPQC) = (1/2) QC * QP
A(ΔADC)/ A(ΔPQC) = (DC * AD) / (QC * QP)
Similar questions