Math, asked by uddhamsingh, 3 months ago

1. In Fig. 6.13. lines AB and CD intersect at O. If
<AOC + <BOE = 70° and < BOD = 40°, find
<BOE and reflex < COE.​

Attachments:

Answers

Answered by farhaanaarif84
10

Given:∠BOD=40

Since AB and CD intersects, ∠AOC=∠BOD(vertically opposite angles)

∠AOC=40

Also,∠AOC+∠BOE=70

⇒∠BOE=70

−∠AOC=70

−40

=30

We need to find reflex∠COE

Reflex∠COE=360

−∠COE

Now, ∠AOC+∠COE+∠BOE=180

⇒∠COE+(∠AOC+∠BOE)=180

⇒∠COE+(40

+30

)=180

⇒∠COE=180

−70

=110

Reflex∠COE=360

−110

=250

Answered by Anonymous
2

❤️ Solution ❤️

Since AB is a straight line ,

:. AOC + COE + EOB = 180°

______OR⭐_______

=> (∠AOE + ∠BOE) + ∠COE = 180° (OR) 70° + ∠COE = 180°

∴ ∠AOC + ∠BOE = 70° [ \sf\green{ Given } ]

______⭐OR⭐________

=> ∠COE = 180° - 70° = 110°

=> Reflex COE = 360° - 110° = 250°

Also , AB and CD intersect at 0

COA = BOD [ \sf\purple{ Vertically \: opposite \: angles } ]

But , BOD = 40° [ \sf\green{ Given } ]

  • COA = 40°

Also, ∠AOC + ∠BOE = 70°

  • 40° + ∠BOE = 70°

______⭐OR⭐________

  • ∠BOE = 70° - 40° = 30°

\huge\bold\blue{ Thus } ,

\huge\fbox\pink{∠BOE \: = \: 30° } and

\large\sf\fbox\pink{Reflex \: ∠COE \: = \: 250° }

☃️ SnowflakeVibes ☃️

Similar questions