Math, asked by ankursingh3369, 7 months ago


1 In the adjoining figure, a chord PQ of a circle with centre
O and radius 15 cm is bisected at M by a diameter AB. If
OM 9 cm, find the lengths of:
(1) PO
(ii) AP
(iii) BP.

Answers

Answered by rsrajveersinghrathor
0

Answer:

bxwbdkqbxabxksbxjvdjshs

Answered by Anonymous
2

Given, radius = 15 cm

OA = OB = OP = OQ = 15 cm

Also, OM = 9 cm

MB = OB – OM = 15 – 9 = 6 cm

AM = OA + OM =15 + 9 cm = 24 cm

In ∆OMP, By using Pythagoras Theorem,

OP2 = OM 2 + PM2

152 = 92 + PM2

PM2 = 255 – 81

PM = √144 = 12 cm

Also, In ∆OMQ

By using Pythagoras Theorem

OQ2 = OM2 + QM2

152 = OM2 + QM2

152 = 92 + QM2 (QM2 = 225 – 81)

QM = √144 = 12 cm

PQ = PM + QM

(As radius is bisected at M)

PQ = 12 + 12 cm = 24 cm

(ii) Now in ∆APM

AP2 = AM2 + OM2

AP2 =242 + 122

AP2 = 576 + 144

AP = √720 = 12 √5 cm

(iii) Now in ∆BMP

BP2 = BM2 + PM2

BP2 = 62 + 122

BP2 = 36 + 144

BP = √180 = 6 √5 cm

{\fcolorbox{blue}{black}{\blue{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:HumanIntelligence\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Similar questions