Math, asked by neetumohite18, 1 day ago

1) In the figure fend the values of x and y​

Attachments:

Answers

Answered by s11d1547jayanti9196
18

Answer:

x=20.5 ,y=16

Step-by-step explanation:

2(x-5)=51

2x-10=51

   2x =51-10

     x = 41/2

      x=20.5

3(y+4)=60

3y+12=60

   3y  =60-12

      y = 48/3

      y=16

Answered by robinhood9
182

Given :

 Side \:  PQ ≅ \: Side \:  PS \\ Side RS ≅ Side RQ \\  \:  \angle PQS = 2 (x -5)  \degree \\ \angle PSQ = 60  \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \angle RSQ = 3(y+4) \degree \\ \angle RQS = 51\degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

To find :

• Value \:  of  \: x   \: and \:  y

Solution :

In  \: ∆PQS, \\ Side \: PQ  ≅ Side \: PS  - ( Given )

Isosceles triangle theorem : If two sides of a triangle are congruent then the angles opposite to them are congruent

 \angle PQS =  \angle \: PSQ \\ 2(x - 5) \degree = 60 \degree \\ x - 5 =  \frac{60}{2}  \\ x - 5 = 30 \degree \\  x = 30 + 5 \\ \boxed{ \blue{ x = 35 \degree}}

  In ∆ RQS ,  \\ Side  \: RS ≅ Side \:  RQ - ( Given )  \\  \angle RSQ  \:  = \angle  RQS \\ - [ Isosceles \:  triangle  \: theorem ]  \\ 3(y + 4) \degree \:  = 51 \degree  \\ y + 4 =  \frac{51}{3 }  \\ y + 4 = 17 \degree \\ y = 17 - 4 \\  \boxed{ \blue {y = 13 \degree}}

Verification :

1) \: \angle PQS = 2(x-5)°  \\  = 2(35 - 5) \degree \\  = 2(30)  \degree \\  = 60 \degree \\  \\ 2) \angle \: RSQ = 3(y+4)° \\  = 3(13 + 4) \degree  \\  = 3(17) \degree \\  = 51 \degree

Similar questions