Math, asked by meghakatiyar1, 1 year ago

1. In the three line segment OA,OBand OC , points L,M,N respectively are so chosen that LM parallel AB and MN parallel BC but neither of L,M,N not of A,N,C are collinear. Show that LN parallel AC.

Answers

Answered by Deepsbhargav
124
__________Hey Megha___________

______________________________

» ᴛʜɪs ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ ᴡɪʟʟ ʜᴇʟᴘ ʏᴏᴜ ✌

______________________________

✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔

______________________________

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

_____________________________

_____◦•●◉✿[Tʜᴀɴᴋ ʏᴏᴜ]✿◉●•◦_____

●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●

_-_-_-_✌☆BE \: \: \: \: BRAINLY☆✌_-_-_-_
Attachments:

MAYAKASHYAP5101: ❤️❤️ Faddu answer mele cheeku ✌️✌️☺️☺️❤️
Deepsbhargav: theku Guddu
WritersParadise01: superb ☺️
Deepsbhargav: theku @Manvi.... xD
WritersParadise01: ^_^
Kanchan57: AWESOME ANSWER @Deepsbharghav
Deepsbhargav: theku @Kanchan.. xD
aakritisingh29: hi
nayakpriya: hii
aakritisingh29: hlo
Answered by ans81
48
Jio HEY MATE HERE IS YOUR ANSWER

IN ⛛ OAB
=> LM II AB
=>/_OML=/_OAB(CROSS ANGLE)
=>
 \frac{ol}{angle \: a} = \frac{om}{mb}
=>
 \frac{angle \: a}{ol} = \frac{om}{mb}
=>
 \frac{la}{ol} + 1 = \frac{om}{mb} + 1
 = > \frac{la + ol}{ol} = \frac{om + mb}{mb}

 \frac{oa}{ol} = \frac{ob}{om} - - - - - - 1
Similarly in ⛛ OBC,
=>MN II BC
=>
 \frac{oc}{on} = \frac{ob}{om} - - - - - 2
 = > \frac{oa}{ol} = \frac{oc}{on} {from \: 1 \: and \: 2}
IN ⛛ OAC

LN II AC
HENCE, PROVED

MAYAKASHYAP5101: ✌️✌️ ossum answer dude
WritersParadise01: great ☺️
BrainlyPromoter: great answer, keep it up :)
nayakpriya: hiii
Similar questions