1. In the three line segment OA,OBand OC , points L,M,N respectively are so chosen that LM parallel AB and MN parallel BC but neither of L,M,N not of A,N,C are collinear. Show that LN parallel AC.
Answers
Answered by
124
__________Hey Megha___________
______________________________
» ᴛʜɪs ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ ᴡɪʟʟ ʜᴇʟᴘ ʏᴏᴜ ✌
______________________________
✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔
______________________________
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
_____________________________
_____◦•●◉✿[Tʜᴀɴᴋ ʏᴏᴜ]✿◉●•◦_____
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
_-_-_-_✌☆☆✌_-_-_-_
______________________________
» ᴛʜɪs ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ ᴡɪʟʟ ʜᴇʟᴘ ʏᴏᴜ ✌
______________________________
✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔
______________________________
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
_____________________________
_____◦•●◉✿[Tʜᴀɴᴋ ʏᴏᴜ]✿◉●•◦_____
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
_-_-_-_✌☆☆✌_-_-_-_
Attachments:
MAYAKASHYAP5101:
❤️❤️ Faddu answer mele cheeku ✌️✌️☺️☺️❤️
Answered by
48
Jio HEY MATE HERE IS YOUR ANSWER
IN ⛛ OAB
=> LM II AB
=>/_OML=/_OAB(CROSS ANGLE)
=>
=>
=>
Similarly in ⛛ OBC,
=>MN II BC
=>
IN ⛛ OAC
LN II AC
HENCE, PROVED
IN ⛛ OAB
=> LM II AB
=>/_OML=/_OAB(CROSS ANGLE)
=>
=>
=>
Similarly in ⛛ OBC,
=>MN II BC
=>
IN ⛛ OAC
LN II AC
HENCE, PROVED
Similar questions