Math, asked by GautamH, 6 months ago

1. In triangle ABC ,
AB = AC = x; BC = 10 cm and the area of
the triangle is 60 cm?. Find x.​

Answers

Answered by abdulrehmanfaisal40
1

Answer:

follow me follow me

Step-by-step explanation:

mark as brain lists

Answered by DevyaniKhushi
0

Given,

  • Measure of BC = 10 cm
  • Area of ∆ABC = 60 cm²
  • Measure of AB = AC = x

Here,

 \text{Area of triangle} = \bf  \frac{b}{4}   \bigg\{  \sqrt{ {4a}^{2}  -  {b}^{2} } \bigg\} \\   \because \:   \text{This triangle has its two} \\  \text{ sides equal and one unequal side.}\\

Now,

 =  >  \frac{10}{4}   \bigg \{  \sqrt{ {4x}^{2} -  {(10)}^{2}  } \bigg\} = 60 \\  \\  =  > \sqrt{ {4x}^{2} -  {(10)}^{2}} =  \frac{60}{ \frac{4}{10} }  \\  \\   \\ =  > \sqrt{ {4x}^{2} -  {(10)}^{2}} =  \frac{60 \times 10}{4}  \\  \\  =  > \sqrt{ {4x}^{2} -  {(10)}^{2}} =  \frac{600}{4}  \\  \\  =  >  {4x}^{2}  -  {(10)}^{2}  =  { \bigg( \frac{600}{4} \bigg)}^{2}  \\  \\  =  >  {4x}^{2}  - 100 =  \frac{3600}{16}  \\  \\  =  >   \:  \:  \:  \:  \: {4x}^{2}  =  \frac{3600}{16}  + 100 \\  \\  =  >  \:  \:  \:  \:  \:  \:  \:  {4x}^{2}  =  \frac{3600 + 1600}{16}  \\  \\  =  >  \:  \:  \:  \:  \:  \:  {4x}^{2}  =  \frac{5200}{16}  \\  \\  =  >  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  =  \frac{5200}{16 \times4 }  \\  \\  =  >  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  =  \frac{5200}{64}  \\  \\  =  > \:  \:  \:  \:  \:  \:  \:   {x}^{2}  = 81.25 \\  =  >  \:  \:  \:  \:  \:  \:  \:  \: x =  \sqrt{81.25}  \\  =  >  \:  \:  \:  \:  \:  \:  \:  \: x = 9.0138

Thus,

  • Measure of AB & AC is equal to 9.0138 cm
Similar questions