Math, asked by Emily7698, 5 hours ago

1.Integrate 1/(1+x^2) for limit (0,1)
2.what is the value of integer 8x^3dx

Answers

Answered by LaeeqAhmed
1

 \bf \large1.

\int ^{1}  _{0} \frac{1}{1 +  {x}^{2} } dx

 \sf \purple{ we \: know \: that : }

 \blue{  \boxed{\int \frac{1}{1 +  {x}^{2} } dx =  \tan ^{ - 1} x  + I _{ c}}}

 \implies   [\tan  ^{ - 1}x ]^{1}  _{0}

 \implies   \tan  ^{ - 1}(1) - \tan  ^{ - 1}(0)

 \implies    \frac{\pi}{4}  - 0

 \orange{ \therefore    \frac{\pi}{4}  }

 \bf \large2.

 \int8 {x}^{3} dx

 \implies   8 \int {x}^{3} dx

 \sf \purple{ we \: know \: that : }

 \blue{  \boxed{\int {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}  +I _{ c} }}

 \implies( 8 ) ( \frac{ {x}^{3 + 1} }{3 + 1} ) + I _{ c}

 \implies( 8 ) ( \frac{ {x}^{4} }{4} ) + I _{ c}

  \orange{\therefore2  {x}^{4} + I _{ c}}

HOPE IT HELPS!!

Similar questions